MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Active Site Threonine Facilitates Proton Transfer during Dioxygen Activation at the Diiron Center of Toluene/o-Xylene Monooxygenase Hydroxylase

Author(s)
Song, Woon Ju; McCormick, Michael S.; Behan, Rachel K.; Sazinsky, Matthew H.; Jiang, Wei; Lin, Jeffery; Krebs, Carsten; Lippard, Stephen J.; ... Show more Show less
Thumbnail
DownloadSong et al JACS.pdf (979.3Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Toluene/o-xylene monooxygenase hydroxylase (ToMOH), a diiron-containing enzyme, can activate dioxygen to oxidize aromatic substrates. To elucidate the role of a strictly conserved T201 residue during dioxygen activation of the enzyme, T201S, T201G, T201C, and T201V variants of ToMOH were prepared by site-directed mutagenesis. X-ray crystal structures of all the variants were obtained. Steady-state activity, regiospecificity, and single-turnover yields were also determined for the T201 mutants. Dioxygen activation by the reduced T201 variants was explored by stopped-flow UV−vis and Mossbauer spectroscopy. These studies demonstrate that the dioxygen activation mechanism is preserved in all T201 variants; however, both the formation and decay kinetics of a peroxodiiron(III) intermediate, T201peroxo, were greatly altered, revealing that T201 is critically involved in dioxygen activation. A comparison of the kinetics of O2 activation in the T201S, T201C, and T201G variants under various reaction conditions revealed that T201 plays a major role in proton transfer, which is required to generate the peroxodiiron(III) intermediate. A mechanism is postulated for dioxygen activation, and possible structures of oxygenated intermediates are discussed.
Date issued
2010-10
URI
http://hdl.handle.net/1721.1/67685
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Journal of the American Chemical Society
Publisher
American Chemical Society
Citation
Song, Woon Ju et al. “Active Site Threonine Facilitates Proton Transfer during Dioxygen Activation at the Diiron Center of Toluene/o-xylene Monooxygenase Hydroxylase.” Journal of the American Chemical Society 132.39 (2010): 13582-13585.
Version: Author's final manuscript
ISSN
0002-7863
1520-5126

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.