Model and laboratory study of dispersion in flows with submerged vegetation
Author(s)
Murphy, E.; Ghisalberti, Marco; Nepf, Heidi
DownloadWRR-Model and Lab.pdf (413.3Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Vegetation is ubiquitous in rivers, estuaries, and wetlands, strongly influencing water conveyance and mass transport. The plant canopy affects mean and turbulent flow structure, and thus both advection and dispersion. Accurate prediction for the transport of nutrients, microbes, dissolved oxygen and other scalars depends on our ability to quantify the impact of vegetation. In this paper, we focus on longitudinal dispersion, which traditionally has been modeled in vegetated channels by drawing analogy to rough boundary layers. This approach is inappropriate in many cases, as the vegetation provides a significant dead zone, which may trap scalars and augment dispersion. The dead zone process is not captured in the rough boundary model. This paper describes a new model for longitudinal dispersion in channels with submerged vegetation, and it validates the model with experimental observations.
Date issued
2007-05Department
Massachusetts Institute of Technology. Department of Civil and Environmental EngineeringJournal
Water Resources Research
Publisher
American Geophysical Union
Citation
Murphy, E., M. Ghisalberti, and H. Nepf. “Model and laboratory study of dispersion in flows with submerged vegetation.” Water Resources Research 43.5 (2007): p. 1-12. ©2007 American Geophysical Union
Version: Final published version
Other identifiers
W05438
ISSN
0043-1397