MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computing Confidence Intervals for Point Process Models

Author(s)
Sarma, Sridevi V.; Nguyen, David P.; Czanner, Gabriela; Wirth, Sylvia; Wilson, Matthew A.; Suzuki, Wendy; Brown, Emery N.; ... Show more Show less
Thumbnail
DownloadSarma-2011-Computing confidence.pdf (236.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Characterizing neural spiking activity as a function of intrinsic and extrinsic factors is important in neuroscience. Point process models are valuable for capturing such information; however, the process of fully applying these models is not always obvious. A complete model application has four broad steps: specification of the model, estimation of model parameters given observed data, verification of the model using goodness of fit, and characterization of the model using confidence bounds. Of these steps, only the first three have been applied widely in the literature, suggesting the need to dedicate a discussion to how the time-rescaling theorem, in combination with parametric bootstrap sampling, can be generally used to compute confidence bounds of point process models. In our first example, we use a generalized linear model of spiking propensity to demonstrate that confidence bounds derived from bootstrap simulations are consistent with those computed from closed-form analytic solutions. In our second example, we consider an adaptive point process model of hippocampal place field plasticity for which no analytical confidence bounds can be derived. We demonstrate how to simulate bootstrap samples from adaptive point process models, how to use these samples to generate confidence bounds, and how to statistically test the hypothesis that neural representations at two time points are significantly different. These examples have been designed as useful guides for performing scientific inference based on point process models.
Date issued
2011-09
URI
http://hdl.handle.net/1721.1/68624
Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
Neural Computation
Publisher
MIT Press
Citation
Sarma, Sridevi V. et al. “Computing Confidence Intervals for Point Process Models.” Neural Computation 23.11 (2011): 2731-2745. Web. 20 Jan. 2012. © 2011 Massachusetts Institute of Technology
Version: Final published version
ISSN
0899-7667
1530-888X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.