MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Continuous Plug Flow Crystallization of Pharmaceutical Compounds

Author(s)
Alvarez, Alejandro J.; Myerson, Allan S.
Thumbnail
Downloadmain article (220.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Crystallization processes in the pharmaceutical industry are usually designed to obtain crystals with controlled size, shape, purity, and polymorphic form. Knowledge of the process conditions required to fabricate crystals with controlled characteristics is critical during process development. In this work, continuous crystallization of ketoconazole, flufenamic acid, and l-glutamic acid in a nonconventional plug flow crystallizer was investigated. Kenics type static mixers were used to promote homogeneous mixing of active pharmaceutical ingredient solution and antisolvent. A strategy of multiple points of addition of antisolvent along the crystallizer was evaluated to control the size of the crystals. Interestingly, it was found that crystal size can be increased or decreased with an increased number of antisolvent addition points, depending on the kinetics of the system. It was also found that smaller crystals with a narrower size distribution can be obtained with the static mixers. A model to describe the continuous crystallization process was developed through the simultaneous solution of a population balance equation, kinetics expressions for crystal growth and nucleation, and a mass balance. The comparison of experimental and calculated values for crystal size distribution revealed that a growth rate dispersion model could describe accurately the continuous crystallization process. Collision of crystals with each other and with mixing elements inside the crystallizer may be the source of random fluctuation of the growth rate in the nonconventional plug flow crystallizer with static mixers.
Date issued
2010-03
URI
http://hdl.handle.net/1721.1/68690
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Crystal Growth and Design
Publisher
American Chemical Society
Citation
Alvarez, Alejandro J., and Allan S. Myerson. “Continuous Plug Flow Crystallization of Pharmaceutical Compounds.” Crystal Growth & Design 10.5 (2010): 2219-2228.
Version: Author's final manuscript
ISSN
1528-7483
1528-7505

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.