Show simple item record

dc.contributor.authorAllen, Erik C.
dc.contributor.authorRutledge, Gregory C.
dc.date.accessioned2012-01-30T17:43:59Z
dc.date.available2012-01-30T17:43:59Z
dc.date.issued2009-05
dc.date.submitted2009-02
dc.identifier.issn0021-9606
dc.identifier.urihttp://hdl.handle.net/1721.1/68989
dc.description.abstractDensity dependent, implicit solvent (DDIS) potentials, the generation of which has been described previously [ E. C. Allen and G. C. Rutledge, J. Chem. Phys. 128, 154115 (2008) ; E. C. Allen and G. C. Rutledge, J. Chem. Phys. 130, 034904 (2009) ], are used in this work to examine the self-assembly of a model surfactant system. While the measurement of thermodynamic properties in simulations of solvated micelles requires large computational resources or specialized free energy calculations, the high degree of coarse-graining enabled by the DDIS algorithm allows for the measurement of critical micelle concentration and aggregation number distribution using single processor NVT simulations. In order to evaluate the transferability of potentials derived from the DDIS methodology, the potentials are derived from simulations of simple monomeric solutes and used in the surfactant system without modification. Despite the high degree of coarse graining and the simplicity of the fitting simulations, we demonstrate that the coarse-grained DDIS potentials generated by this method reliably reproduce key properties of the underlying surfactant system: the critical micelle concentration, and the average aggregation number. The success of the DDIS algorithm suggests its utility for more realistic surfactant models.en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Office of Science, Computational Science Graduate Fellowship Program)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (National Nuclear Security Administration, Contract No. DEFG02- 97ER25308)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.3139025en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceProf. Rutledge via Erja Kajosaloen_US
dc.titleCoarse-grained, density dependent implicit solvent model reliably reproduces behavior of a model surfactant systemen_US
dc.typeArticleen_US
dc.identifier.citationAllen, Erik C., and Gregory C. Rutledge. “Coarse-grained, density dependent implicit solvent model reliably reproduces behavior of a model surfactant system.” The Journal of Chemical Physics 130.20 (2009): 204903.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.approverRutledge, Gregory C.
dc.contributor.mitauthorRutledge, Gregory C.
dc.contributor.mitauthorAllen, Erik C.
dc.relation.journalJournal of Chemical Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAllen, Erik C.; Rutledge, Gregory C.en
dc.identifier.orcidhttps://orcid.org/0000-0001-8137-1732
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record