MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance

Author(s)
Goldberg, Brian D.; Iftimia, Nicusor V.; Bressner, Jason E.; Pitman, Martha B.; Halpern, Elkan; Bouma, Brett E.; Tearney, Guillermo J.; ... Show more Show less
Thumbnail
DownloadGoldberg-2008-Automated algorithm.pdf (438.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Fine needle aspiration biopsy (FNAB) is a rapid and cost-effective method for obtaining a first-line diagnosis of a palpable mass of the breast. However, because it can be difficult to manually discriminate between adipose tissue and the fibroglandular tissue more likely to harbor disease, this technique is plagued by a high number of nondiagnostic tissue draws. We have developed a portable, low coherence interferometry (LCI) instrument for FNAB guidance to combat this problem. The device contains an optical fiber probe inserted within the bore of the fine gauge needle and is capable of obtaining tissue structural information with a spatial resolution of 10 μm over a depth of approximately 1.0 mm. For such a device to be effective clinically, algorithms that use the LCI data must be developed for classifying different tissue types. We present an automated algorithm for differentiating adipose tissue from fibroglandular human breast tissue based on three parameters computed from the LCI signal (slope, standard deviation, spatial frequency content). A total of 260 breast tissue samples from 58 patients were collected from excised surgical specimens. A training set (N = 72) was used to extract parameters for each tissue type and the parameters were fit to a multivariate normal density. The model was applied to a validation set (N = 86) using likelihood ratios to classify groups. The overall accuracy of the model was 91.9% (84.0 to 96.7) with 98.1% (89.7 to 99.9) sensitivity and 82.4% (65.5 to 93.2) specificity where the numbers in parentheses represent the 95% confidence intervals. These results suggest that LCI can be used to determine tissue type and guide FNAB of the breast.
Date issued
2008-02
URI
http://hdl.handle.net/1721.1/69119
Department
Harvard University--MIT Division of Health Sciences and Technology
Journal
Journal of Biomedical Optics
Publisher
SPIE - International Society for Optical Engineering
Citation
Goldberg, Brian D. et al. “Automated Algorithm for Differentiation of Human Breast Tissue Using Low Coherence Interferometry for Fine Needle Aspiration Biopsy Guidance.” Journal of Biomedical Optics 13.1 (2008): 014014. Web. 15 Feb. 2012. © 2008 SPIE - International Society for Optical Engineering
Version: Final published version
ISSN
1083-3668
1560-2281

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.