Radial and Spiral Stream Formation in Proteus mirabilis Colonies
Author(s)
Xue, Chuan; Othmer, Hans G.; Budrene-Kac, Elena O.
DownloadXue-2011-Radial and spiral st.pdf (1.511Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
The enteric bacterium Proteus mirabilis, which is a pathogen that forms biofilms in vivo, can swarm over hard surfaces and form a variety of spatial patterns in colonies. Colony formation involves two distinct cell types: swarmer cells that dominate near the surface and the leading edge, and swimmer cells that prefer a less viscous medium, but the mechanisms underlying pattern formation are not understood. New experimental investigations reported here show that swimmer cells in the center of the colony stream inward toward the inoculation site and in the process form many complex patterns, including radial and spiral streams, in addition to previously-reported concentric rings. These new observations suggest that swimmers are motile and that indirect interactions between them are essential in the pattern formation. To explain these observations we develop a hybrid model comprising cell-based and continuum components that incorporates a chemotactic response of swimmers to a chemical they produce. The model predicts that formation of radial streams can be explained as the modulation of the local attractant concentration by the cells, and that the chirality of the spiral streams results from a swimming bias of the cells near the surface of the substrate. The spatial patterns generated from the model are in qualitative agreement with the experimental observations.
Date issued
2011-12Department
Massachusetts Institute of Technology. Department of MathematicsJournal
PLoS Computational Biology
Publisher
Public Library of Science
Citation
Xue, Chuan, Elena O. Budrene, and Hans G. Othmer. “Radial and Spiral Stream Formation in Proteus Mirabilis Colonies.” Ed. Oskar Hallatschek. PLoS Computational Biology 7.12 (2011): e1002332. Web. 23 Feb. 2012.
Version: Final published version
ISSN
1553-734X
1553-7358