MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Activation of mGluR5 Induces Rapid and Long-Lasting Protein Kinase D Phosphorylation in Hippocampal Neurons

Author(s)
Krueger, Dilja; Osterweil, Emily; Bear, Mark
Thumbnail
DownloadBear-Activation of mGluR5 Induces Rapid.pdf (725.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Metabotropic glutamate receptors (mGluRs), including mGluR5, play a central role in regulating the strength and plasticity of synaptic connections in the brain. However, the signaling pathways that connect mGluRs to their downstream effectors are not yet fully understood. Here, we report that stimulation of mGluR5 in hippocampal cultures and slices results in phosphorylation of protein kinase D (PKD) at the autophosphorylation site Ser-916. This phosphorylation event occurs within 30 s of stimulation, persists for at least 24 h, and is dependent on activation of phospholipase C and protein kinase C. Our data suggest that activation of PKD may represent a novel signaling pathway linking mGluR5 to its downstream targets. These findings have important implications for the study of the molecular mechanisms underlying mGluR-dependent synaptic plasticity.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/69224
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Picower Institute for Learning and Memory
Journal
Journal of Molecular Neuroscience
Publisher
Springer Science + Business Media
Citation
Krueger, Dilja D., Emily K. Osterweil, and Mark F. Bear. “Activation of mGluR5 Induces Rapid and Long-Lasting Protein Kinase D Phosphorylation in Hippocampal Neurons.” Journal of Molecular Neuroscience 42.1 (2010): 1–8.
Version: Author's final manuscript
ISSN
0895-8696
1559-1166

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.