Show simple item record

dc.contributor.authorSboner, Andrea
dc.contributor.authorDemichelis, Francesca
dc.contributor.authorCalza, Stefano
dc.contributor.authorPawitan, Yudi
dc.contributor.authorSetlur, Sunita R.
dc.contributor.authorHoshida, Yujin
dc.contributor.authorPerner, Sven
dc.contributor.authorAdami, Hans-Olov
dc.contributor.authorFall, Katja
dc.contributor.authorMucci, Lorelei A.
dc.contributor.authorKantoff, Philip W.
dc.contributor.authorStampfer, Meir
dc.contributor.authorAndersson, Swen-Olof
dc.contributor.authorVarenhorst, Eberhard
dc.contributor.authorJohansson, Jan-Erik
dc.contributor.authorGerbstein, Mark B.
dc.contributor.authorGolub, Todd R.
dc.contributor.authorRubin, Mark A.
dc.contributor.authorAndren, Ove
dc.date.accessioned2012-03-01T17:03:50Z
dc.date.available2012-03-01T17:03:50Z
dc.date.issued2010-03
dc.date.submitted2009-11
dc.identifier.urihttp://hdl.handle.net/1721.1/69537
dc.description.abstractBackground: Current prostate cancer prognostic models are based on pre-treatment prostate specific antigen (PSA) levels, biopsy Gleason score, and clinical staging but in practice are inadequate to accurately predict disease progression. Hence, we sought to develop a molecular panel for prostate cancer progression by reasoning that molecular profiles might further improve current clinical models. Methods: We analyzed a Swedish Watchful Waiting cohort with up to 30 years of clinical follow up using a novel method for gene expression profiling. This cDNA-mediated annealing, selection, ligation, and extension (DASL) method enabled the use of formalin-fixed paraffin-embedded transurethral resection of prostate (TURP) samples taken at the time of the initial diagnosis. We determined the expression profiles of 6100 genes for 281 men divided in two extreme groups: men who died of prostate cancer and men who survived more than 10 years without metastases (lethals and indolents, respectively). Several statistical and machine learning models using clinical and molecular features were evaluated for their ability to distinguish lethal from indolent cases. Results: Surprisingly, none of the predictive models using molecular profiles significantly improved over models using clinical variables only. Additional computational analysis confirmed that molecular heterogeneity within both the lethal and indolent classes is widespread in prostate cancer as compared to other types of tumors.en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (NCI grant P50 90381)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant RR19895)en_US
dc.description.sponsorshipBiomedical High Performance Computing Centeren_US
dc.language.isoen_US
dc.publisherBioMed Central Ltd.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1186/1755-8794-3-8en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0en_US
dc.sourceBioMed Centralen_US
dc.titleMolecular sampling of prostate cancer: a dilemma for predicting disease progressionen_US
dc.typeArticleen_US
dc.identifier.citationSboner, Andrea et al. “Molecular Sampling of Prostate Cancer: a Dilemma for Predicting Disease Progression.” BMC Medical Genomics 3.1 (2010): 8.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.approverHoshida, Yujin
dc.contributor.mitauthorHoshida, Yujin
dc.relation.journalBMC Medical Genomicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSboner, Andrea; Demichelis, Francesca; Calza, Stefano; Pawitan, Yudi; Setlur, Sunita R; Hoshida, Yujin; Perner, Sven; Adami, Hans-Olov; Fall, Katja; Mucci, Lorelei A; Kantoff, Philip W; Stampfer, Meir; Andersson, Swen-Olof; Varenhorst, Eberhard; Johansson, Jan-Erik; Gerstein, Mark B; Golub, Todd R; Rubin, Mark A; Andrén, Oveen
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record