MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unitary cavity spin squeezing by quantum erasure

Author(s)
Leroux, Ian Daniel; Schleier-Smith, Monika Helene; Zhang, Hao; Vuletic, Vladan
Thumbnail
DownloadLeroux-2012-In situ measurements of the optical absorption.pdf (572.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Deterministic light-induced spin squeezing in an atomic gas is limited by photon shot noise or, equivalently, by atomic state information escaping with the light field mediating the effective atom-atom interaction. We show theoretically that the performance of cavity spin squeezing [ M. H. Schleier-Smith, I. D. Leroux and V. Vuletić Phys. Rev. A 81 021804 (2010)] can be substantially improved by erasing the light-atom entanglement, and propose several methods for doing so. Accounting for light scattering into free space, quantum erasure improves the scaling of cavity squeezing from S[superscript −1/2] to S[superscript −2/3], where S is the total atomic spin.
Date issued
2012-01
URI
http://hdl.handle.net/1721.1/69565
Department
Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Research Laboratory of Electronics; MIT-Harvard Center for Ultracold Atoms
Journal
Physical Review A
Publisher
American Physical Society (APS)
Citation
Leroux, Ian et al. “Unitary Cavity Spin Squeezing by Quantum Erasure.” Physical Review A 85.1 (2012): n. pag. Web. 2 Mar. 2012. © 2011 American Physical Society
Version: Final published version
ISSN
1050-2947
1094-1622

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.