Effective field theory of fractional quantized Hall nematics
Author(s)
Mulligan, Michael; Nayak, Chetan; Kachru, Shamit
DownloadMulligan-2011-Effective field theory of fractional quantized.pdf (263.7Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory—which is shown to be its dual—on a more microscopic basis and enables us to compute a ground-state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal dc resistivity due to thermally excited quasiparticles is anisotropic. We interpret recent experiments at Landau-level filling factor ν=7/3 in terms of our theory.
Date issued
2011-11Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Laboratory for Nuclear ScienceJournal
Physical Review B
Publisher
American Physical Society (APS)
Citation
Mulligan, Michael, Chetan Nayak, and Shamit Kachru. “Effective Field Theory of Fractional Quantized Hall Nematics.” Physical Review B 84.19 (2011): n. pag. Web. 2 Mar. 2012. © 2011 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X