MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations

Author(s)
Peraud, Jean-Philippe Michel; Hadjiconstantinou, Nicolas
Thumbnail
DownloadPeraud-2011-Efficient simulation of multidimensional phonon transport using.pdf (944.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a Monte Carlo method for obtaining solutions of the Boltzmann equation to describe phonon transport in micro- and nanoscale devices. The proposed method can resolve arbitrarily small signals (e.g., temperature differences) at small constant cost and thus represents a considerable improvement compared to traditional Monte Carlo methods, whose cost increases quadratically with decreasing signal. This is achieved via a control-variate variance-reduction formulation in which the stochastic particle description solves only for the deviation from a nearby equilibrium, while the latter is described analytically. We also show that simulation of an energy-based Boltzmann equation results in an algorithm that lends itself naturally to exact energy conservation, thereby considerably improving the simulation fidelity. Simulations using the proposed method are used to investigate the effect of porosity on the effective thermal conductivity of silicon. We also present simulations of a recently developed thermal conductivity spectroscopy process. The latter simulations demonstrate how the computational gains introduced by the proposed method enable the simulation of otherwise intractable multiscale phenomena.
Date issued
2011-11
URI
http://hdl.handle.net/1721.1/69582
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Physical Review B
Publisher
American Physical Society (APS)
Citation
Péraud, Jean-Philippe M., and Nicolas G. Hadjiconstantinou. “Efficient Simulation of Multidimensional Phonon Transport Using Energy-based Variance-reduced Monte Carlo Formulations.” Physical Review B 84.20 (2011): n. pag. Web. 2 Mar. 2012. © 2011 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.