Show simple item record

dc.contributor.authorZhou, Jun
dc.contributor.authorYang, Ronggui
dc.contributor.authorChen, Gang
dc.contributor.authorDresselhaus, Mildred
dc.date.accessioned2012-03-09T18:05:22Z
dc.date.available2012-03-09T18:05:22Z
dc.date.issued2011-11
dc.date.submitted2011-04
dc.identifier.issn0031-9007
dc.identifier.issn1079-7114
dc.identifier.urihttp://hdl.handle.net/1721.1/69627
dc.description.abstractThe thermoelectric figure of merit (ZT) in narrow conduction bands of different material dimensionalities is investigated for different carrier scattering models. When the bandwidth is zero, the transport distribution function (TDF) is finite, not infinite as previously speculated by Mahan and Sofo [ Proc. Natl. Acad. Sci. U.S.A. 93 7436 (1996)], even though the carrier density of states goes to infinity. Such a finite TDF results in a zero electrical conductivity and thus a zero ZT. We point out that the optimal ZT cannot be found in an extremely narrow conduction band. The existence of an optimal bandwidth for a maximal ZT depends strongly on the scattering models and the dimensionality of the material. A nonzero optimal bandwidth for maximizing ZT also depends on the lattice thermal conductivity. A larger maximum ZT can be obtained for materials with a smaller lattice thermal conductivity.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (Contract No. N66001-10-C-4002)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Grant No. FA9550-11-1-0109)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant No. CBET 0846561)en_US
dc.description.sponsorshipSolid-State Solar-Thermal Energy Conversion Centeren_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (Award No. DE-SC0001299/DE-FG02-09ER46577)en_US
dc.language.isoen_US
dc.publisherAmerican Physical Society (APS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevLett.107.226601en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAPSen_US
dc.titleOptimal Bandwidth for High Efficiency Thermoelectricsen_US
dc.typeArticleen_US
dc.identifier.citationZhou, Jun et al. “Optimal Bandwidth for High Efficiency Thermoelectrics.” Physical Review Letters 107.22 (2011): n. pag. Web. 9 Mar. 2012. © 2011 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.approverChen, Gang
dc.contributor.mitauthorChen, Gang
dc.contributor.mitauthorDresselhaus, Mildred
dc.relation.journalPhysical Review Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsZhou, Jun; Yang, Ronggui; Chen, Gang; Dresselhaus, Mildreden
dc.identifier.orcidhttps://orcid.org/0000-0001-8492-2261
dc.identifier.orcidhttps://orcid.org/0000-0002-3968-8530
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record