MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fluorescence quenching by photoinduced electron transfer in the Zn[superscript 2+] sensor Zinpyr-1: a computational investigation

Author(s)
Kowalczyk, Timothy Daniel; Lin, Ziliang; Van Voorhis, Troy
Thumbnail
DownloadKowalczykVanVoorhis10.pdf (581.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Alternative title
Fluorescence quenching by photoinduced electron transfer in the Zn2+ sensor Zinpyr-1: a computational investigation
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We report a detailed study of luminescence switching in the fluorescent zinc sensor Zinpyr-1 by density functional methods. A two-pronged approach employing both time-dependent density functional theory (TDDFT) and constrained density functional theory (CDFT) is used to characterize low-lying electronically excited states of the sensor. The calculations indicate that fluorescence activation in the sensor is governed by a photoinduced electron transfer mechanism in which the energy level ordering of the excited states is altered by binding Zn2+. While the sensor is capable of binding two Zn2+ cations, a single Zn2+ ion appears to be sufficient to activate moderate fluorescence in aqueous solution at physiological pH. We show that it is reasonable to consider the tertiary amine as the effective electron donor in this system, although the pyridyl nitrogens each contribute some density to the xanthone ring. The calculations illustrate an important design principle: because protonation equilibria at receptor sites can play a determining role in the sensor’s fluorescence response, receptor sites with a pKa near the pH of the sample are to be disfavored if a sensor governed by a simple PET fluorescence quenching model is desired.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/69659
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Journal of Physical Chemistry A
Publisher
American Chemical Society
Citation
Kowalczyk, Tim, Ziliang Lin, and Troy Van Voorhis. “Fluorescence Quenching by Photoinduced Electron Transfer in the Zn[superscript 2+] Sensor Zinpyr-1: A Computational Investigation.” The Journal of Physical Chemistry A 114.38 (2010): 10427–10434.
Version: Author's final manuscript
ISSN
1089-5639
1520-5215

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.