Show simple item record

dc.contributor.authorGoyal, Vineet
dc.contributor.authorBertsimas, Dimitris J
dc.date.accessioned2012-03-16T15:37:33Z
dc.date.available2012-03-16T15:37:33Z
dc.date.issued2011-01
dc.date.submitted2009-10
dc.identifier.issn0025-5610
dc.identifier.issn1436-4646
dc.identifier.urihttp://hdl.handle.net/1721.1/69679
dc.description.abstractWe consider a two-stage adaptive linear optimization problem under right hand side uncertainty with a min–max objective and give a sharp characterization of the power and limitations of affine policies (where the second stage solution is an affine function of the right hand side uncertainty). In particular, we show that the worst-case cost of an optimal affine policy can be Omega(m12−) times the worst-case cost of an optimal fully-adaptable solution for any delta > 0, where m is the number of linear constraints. We also show that the worst-case cost of the best affine policy is O(m) times the optimal cost when the first-stage constraint matrix has non-negative coefficients. Moreover, if there are only k ≤ m uncertain parameters, we generalize the performance bound for affine policies to O(k) , which is particularly useful if only a few parameters are uncertain. We also provide an O(k) -approximation algorithm for the general case without any restriction on the constraint matrix but the solution is not an affine function of the uncertain parameters. We also give a tight characterization of the conditions under which an affine policy is optimal for the above model. In particular, we show that if the uncertainty set, R+m is a simplex, then an affine policy is optimal. However, an affine policy is suboptimal even if is a convex combination of only (m + 3) extreme points (only two more extreme points than a simplex) and the worst-case cost of an optimal affine policy can be a factor (2 − delta) worse than the worst-case cost of an optimal fully-adaptable solution for any delta > 0.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Grants DMI-0556106)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (EFRI-0735905)en_US
dc.language.isoen_US
dc.publisherSpringer and Mathematical Optimization Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10107-011-0444-4en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceProf. Bertsimas via Alex Caracuzzoen_US
dc.titleOn the Power and Limitations of Affine Policies in Two-Stage Adaptive Optimizationen_US
dc.typeArticleen_US
dc.identifier.citationBertsimas, Dimitris, and Vineet Goyal. “On the Power and Limitations of Affine Policies in Two-stage Adaptive Optimization.” Mathematical Programming, Ser. A (2011).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.approverBertsimas, Dimitris J.
dc.contributor.mitauthorGoyal, Vineet
dc.contributor.mitauthorBertsimas, Dimitris J.
dc.relation.journalMathematical Programmingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBertsimas, Dimitris; Goyal, Vineeten
dc.identifier.orcidhttps://orcid.org/0000-0002-1985-1003
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record