Show simple item record

dc.contributor.authorMatulef, Kevin M.
dc.contributor.authorO'Donnell, Ryan
dc.contributor.authorRubinfeld, Ronitt
dc.contributor.authorServedio, Rocco A.
dc.date.accessioned2012-03-28T14:50:04Z
dc.date.available2012-03-28T14:50:04Z
dc.date.issued2010-02
dc.date.submitted2009-07
dc.identifier.issn0097-5397
dc.identifier.issn1095-7111
dc.identifier.urihttp://hdl.handle.net/1721.1/69873
dc.description.abstractThis paper addresses the problem of testing whether a Boolean-valued function f is a halfspace, i.e., a function of the form f(x)=sgn(w [dot] x-theta). We consider halfspaces over the continuous domain R[superscript n] (endowed with the standard multivariate Gaussian distribution) as well as halfspaces over the Boolean cube {-1,1}[superscript n] (endowed with the uniform distribution). In both cases we give an algorithm that distinguishes halfspaces from functions that are epsilon-far from any halfspace using only poly([fraction 1 over epsilon]) queries, independent of the dimension $n$. Two simple structural results about halfspaces are at the heart of our approach for the Gaussian distribution: The first gives an exact relationship between the expected value of a halfspace f and the sum of the squares of f's degree-1 Hermite coefficients, and the second shows that any function that approximately satisfies this relationship is close to a halfspace. We prove analogous results for the Boolean cube {-1,1}[superscript n] (with Fourier coefficients in place of Hermite coefficients) for balanced halfspaces in which all degree-1 Fourier coefficients are small. Dealing with general halfspaces over {-1,1}[superscript n] poses significant additional complications and requires other ingredients. These include “cross-consistency” versions of the results mentioned above for pairs of halfspaces with the same weights but different thresholds; new structural results relating the largest degree-1 Fourier coefficient and the largest weight in unbalanced halfspaces; and algorithmic techniques from recent work on testing juntas [E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky, Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science, 2002, pp. 103–112].en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant 0514771)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (0732334)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant 0728645)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Graduate fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF-CAREER Award CCF-0347282)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award CCF-0523664)en_US
dc.description.sponsorshipAlfred P. Sloan Foundation (Research Fellowship)en_US
dc.language.isoen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/070707890en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceAmy Stout / webpageen_US
dc.titleTesting Halfspacesen_US
dc.typeArticleen_US
dc.identifier.citationMatulef, Kevin et al. “Testing Halfspaces.” SIAM Journal on Computing 39.5 (2010): 2004.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverRubinfeld, Ronitt
dc.contributor.mitauthorRubinfeld, Ronitt
dc.contributor.mitauthorMatulef, Kevin M.
dc.relation.journalSIAM Journal on Computingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMatulef, Kevin; O'Donnell, Ryan; Rubinfeld, Ronitt; Servedio, Rocco A.en
dc.identifier.orcidhttps://orcid.org/0000-0002-4353-7639
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record