Show simple item record

dc.contributor.authorFinchelstein, Daniel Frederic
dc.contributor.authorChandrakasan, Anantha P.
dc.contributor.authorDaly, Denis C.
dc.contributor.authorKwong, Joyce
dc.contributor.authorRamadass, Yogesh Kumar
dc.contributor.authorSinangil, Mahmut Ersin
dc.contributor.authorSze, Vivienne
dc.contributor.authorVerma, Naveen
dc.date.accessioned2012-04-04T20:34:53Z
dc.date.available2012-04-04T20:34:53Z
dc.date.issued2010-01
dc.date.submitted2009-09
dc.identifier.issn0018-9219
dc.identifier.issn1558-2256
dc.identifier.otherINSPEC Accession Number: 11087576
dc.identifier.urihttp://hdl.handle.net/1721.1/69939
dc.description.abstractEnergy efficiency of electronic circuits is a critical concern in a wide range of applications from mobile multi-media to biomedical monitoring. An added challenge is that many of these applications have dynamic workloads. To reduce the energy consumption under these variable computation requirements, the underlying circuits must function efficiently over a wide range of supply voltages. This paper presents voltage-scalable circuits such as logic cells, SRAMs, ADCs, and dc-dc converters. Using these circuits as building blocks, two different applications are highlighted. First, we describe an H.264/AVC video decoder that efficiently scales between QCIF and 1080p resolutions, using a supply voltage varying from 0.5 V to 0.85 V. Second, we describe a 0.3 V 16-bit micro-controller with on-chip SRAM, where the supply voltage is generated efficiently by an integrated dc-dc converter.en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC)en_US
dc.description.sponsorshipTexas Instruments Incorporated (Texas Instruments Graduate Women’s Fellowship for Leadership in Microelectronics)en_US
dc.description.sponsorshipIntel Corporation (Intel Ph.D. Fellowship Program)en_US
dc.description.sponsorshipTexas Instruments Incorporateden_US
dc.description.sponsorshipNokia Corporationen_US
dc.description.sponsorshipSemiconductor Research Corporation . Focus Center for Circuit and System Solutions (C2S2)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agencyen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/jproc.2009.2033621en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.titleTechnologies for Ultradynamic Voltage Scalingen_US
dc.typeArticleen_US
dc.identifier.citationChandrakasan, A.P. et al. “Technologies for Ultradynamic Voltage Scaling.” Proceedings of the IEEE 98.2 (2010): 191–214. Web. 4 Apr. 2012. © 2010 Institute of Electrical and Electronics Engineersen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Microsystems Technology Laboratoriesen_US
dc.contributor.approverChandrakasan, Anantha P.
dc.contributor.mitauthorChandrakasan, Anantha P.
dc.contributor.mitauthorDaly, Denis C.
dc.contributor.mitauthorKwong, Joyce
dc.contributor.mitauthorRamadass, Yogesh Kumar
dc.contributor.mitauthorSinangil, Mahmut Ersin
dc.contributor.mitauthorSze, Vivienne
dc.contributor.mitauthorVerma, Naveen
dc.relation.journalProceedings of the IEEEen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChandrakasan, A.P.; Daly, D.C.; Finchelstein, D.F.; Kwong, J.; Ramadass, Y.K.; Sinangil, M.E.; Sze, V.; Verma, N.en
dc.identifier.orcidhttps://orcid.org/0000-0002-5977-2748
dc.identifier.orcidhttps://orcid.org/0000-0003-4841-3990
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record