MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of Gold Nanorod Surface Chemistry on Cellular Response

Author(s)
Grabinski, Christin; Schaeublin, Nicole; Wijaya, Andy; D’Couto, Helen; Baxamusa, Salmaan H.; Hamad-Schifferli, Kimberly; Hussain, Saber M.; ... Show more Show less
Thumbnail
DownloadMain article (4.414Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Gold nanorods (GNRs) stabilized with cetyltrimethylammonium bromide (CTAB) and GNR functionalized via a ligand exchange method with either thiolated polyethylene glycol (PEG5000) or mercaptohexadecanoic acid (MHDA) were investigated for their stability in biological media and subsequent toxicological effects to HaCaT cells. GNR-PEG and GNR-MHDA exhibited minimal effects on cell proliferation, whereas GNR-CTAB reduced cell proliferation significantly due to the inherent toxicity of the cationic surfactant to cells. Cell uptake studies indicated relatively low uptake for GNR-PEG and high uptake for GNR-MHDA. Reverse transcriptase polymerase chain reaction (RT-PCR) revealed that GNR-PEG induced less significant and unique changes in the transcription levels of 84 genes related to stress and toxicity compared to GNR-MHDA. The results demonstrate that, although cell proliferation was not affected by both particles, there is a significant difference in gene expression in GNR-MHDA exposed cells, suggesting long-term implications for chronic exposure.
Date issued
2011-04
URI
http://hdl.handle.net/1721.1/69944
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
ACS Nano
Publisher
American Chemical Society
Citation
Grabinski, Christin et al. “Effect of Gold Nanorod Surface Chemistry on Cellular Response.” ACS Nano 5.4 (2011): 2870–2879.
Version: Author's final manuscript
ISSN
1936-0851
1936-086X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.