Show simple item record

dc.contributor.authorRichmond, Christ D.
dc.contributor.authorMovassagh, Ramis
dc.contributor.authorMovassagh, Ramis
dc.contributor.authorEdelman, Alan
dc.date.accessioned2012-04-11T20:43:09Z
dc.date.available2012-04-11T20:43:09Z
dc.date.issued2011-04
dc.date.submitted2010-11
dc.identifier.isbn978-1-4244-9722-5
dc.identifier.issn1058-6393
dc.identifier.otherINSPEC Accession Number: 11972881
dc.identifier.urihttp://hdl.handle.net/1721.1/69987
dc.description.abstractThe method of interval estimation (MIE) provides a strategy for mean squared error (MSE) prediction of algorithm performance at low signal-to-noise ratios (SNR) below estimation threshold where asymptotic predictions fail. MIE interval error probabilities for the Capon algorithm are known and depend on the true data covariance and assumed signal array response. Herein estimation of these error probabilities is considered to improve representative measurement errors for parameter estimates obtained in low SNR scenarios, as this may improve overall target tracking performance. A statistical analysis of Capon error probability estimation based on the data sample covariance matrix is explored herein.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant CCF-0829421)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant DMS-1035400)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ACSSC.2010.5757895en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceIEEEen_US
dc.titleSample covariance based estimation of Capon algorithm error probabilitiesen_US
dc.typeArticleen_US
dc.identifier.citationRichmond, Christ D. et al. “Sample Covariance Based Estimation of Capon Algorithm Error Probabilities.” IEEE, 2010. 1842–1845. Web. 11 Apr. 2012. © 2011 Institute of Electrical and Electronics Engineersen_US
dc.contributor.departmentLincoln Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverEdelman, Alan
dc.contributor.mitauthorRichmond, Christ D.
dc.contributor.mitauthorMovassagh, Ramis
dc.contributor.mitauthorMovassagh, Ramis
dc.contributor.mitauthorEdelman, Alan
dc.relation.journal2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsRichmond, Christ D.; Geddes, Robert L.; Movassagh, Ramis; Edelman, Alanen
dc.identifier.orcidhttps://orcid.org/0000-0001-7676-3133
dc.identifier.orcidhttps://orcid.org/0000-0002-4078-6752
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record