Show simple item record

dc.contributor.authorHassidim, Avinatan
dc.contributor.authorOnak, Krzysztof
dc.contributor.authorEdelman, Alan
dc.contributor.authorNguyen, Huy N.
dc.date.accessioned2012-04-11T21:05:58Z
dc.date.available2012-04-11T21:05:58Z
dc.date.issued2011-06
dc.identifier.isbn978-3-642-22934-3
dc.identifier.urihttp://hdl.handle.net/1721.1/69988
dc.description.abstractPartitioning oracles were introduced by Hassidim et al. (FOCS 2009) as a generic tool for constant-time algorithms. For any ε > 0, a partitioning oracle provides query access to a fixed partition of the input bounded-degree minor-free graph, in which every component has size poly(1/ε), and the number of edges removed is at most εn, where n is the number of vertices in the graph. However, the oracle of Hassidim et al. makes an exponential number of queries to the input graph to answer every query about the partition. In this paper, we construct an efficient partitioning oracle for graphs with constant treewidth. The oracle makes only O(poly(1/ε)) queries to the input graph to answer each query about the partition. Examples of bounded-treewidth graph classes include k-outerplanar graphs for fixed k, series-parallel graphs, cactus graphs, and pseudoforests. Our oracle yields poly(1/ε)-time property testing algorithms for membership in these classes of graphs. Another application of the oracle is a poly(1/ε)-time algorithm that approximates the maximum matching size, the minimum vertex cover size, and the minimum dominating set size up to an additive εn in graphs with bounded treewidth. Finally, the oracle can be used to test in poly(1/ε) time whether the input bounded-treewidth graph is k-colorable or perfect.en_US
dc.description.sponsorshipSimons Foundationen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant 0732334)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant 0728645)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-22935-0_45en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleAn efficient partitioning oracle for bounded-treewidth graphsen_US
dc.typeArticleen_US
dc.identifier.citationEdelman, Alan et al. “An Efficient Partitioning Oracle for Bounded-Treewidth Graphs.” Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Ed. Leslie Ann Goldberg et al. Vol. 6845. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. 530–541. Web. 11 Apr. 2012.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverEdelman, Alan
dc.contributor.mitauthorEdelman, Alan
dc.contributor.mitauthorNguyen, Huy N.
dc.relation.journalApproximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. 14th International Workshop, APPROX 2011, and 15th International Workshop, RANDOM 2011, Princeton, NJ, USA, August 17-19, 2011. Proceedingsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsEdelman, Alan; Hassidim, Avinatan; Nguyen, Huy N.; Onak, Krzysztofen
dc.identifier.orcidhttps://orcid.org/0000-0001-7676-3133
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record