Show simple item record

dc.contributor.authorWaldispühl, Jerome
dc.contributor.authorBerger, Bonnie
dc.contributor.authorDevadas, Srinivas
dc.contributor.authorO'Donnell, Charles William
dc.contributor.authorShenker, Solomon
dc.date.accessioned2012-04-11T21:47:34Z
dc.date.available2012-04-11T21:47:34Z
dc.date.issued2011-09
dc.identifier.issn1066-5277
dc.identifier.issn1066-5277
dc.identifier.urihttp://hdl.handle.net/1721.1/69990
dc.description.abstractMolecular dynamics (MD) simulations can now predict ms-timescale folding processes of small proteins; however, this presently requires hundreds of thousands of CPU hours and is primarily applicable to short peptides with few long-range interactions. Larger and slower-folding proteins, such as many with extended β-sheet structure, would require orders of magnitude more time and computing resources. Furthermore, when the objective is to determine only which folding events are necessary and limiting, atomistic detail MD simulations can prove unnecessary. Here, we introduce the program tFolder as an efficient method for modelling the folding process of large β-sheet proteins using sequence data alone. To do so, we extend existing ensemble β-sheet prediction techniques, which permitted only a fixed anti-parallel β-barrel shape, with a method that predicts arbitrary β-strand/β-strand orientations and strand-order permutations. By accounting for all partial and final structural states, we can then model the transition from random coil to native state as a Markov process, using a master equation to simulate population dynamics of folding over time. Thus, all putative folding pathways can be energetically scored, including which transitions present the greatest barriers. Since correct folding pathway prediction is likely determined by the accuracy of contact prediction, we demonstrate the accuracy of tFolder to be comparable with state-of-the-art methods designed specifically for the contact prediction problem alone. We validate our method for dynamics prediction by applying it to the folding pathway of the well-studied Protein G. With relatively very little computation time, tFolder is able to reveal critical features of the folding pathways which were only previously observed through time-consuming MD simulations and experimental studies. Such a result greatly expands the number of proteins whose folding pathways can be studied, while the algorithmic integration of ensemble prediction with Markovian dynamics can be applied to many other problems.en_US
dc.language.isoen_US
dc.publisherMary Ann Lieberten_US
dc.relation.isversionofhttp://dx.doi.org/10.1089/cmb.2011.0176en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMary Ann Leiberten_US
dc.titleEfficient Traversal of Beta-Sheet Protein Folding Pathways Using Ensemble Modelsen_US
dc.typeArticleen_US
dc.identifier.citationShenker, Solomon et al. “Efficient Traversal of Beta-Sheet Protein Folding Pathways Using Ensemble Models.” Journal of Computational Biology 18.11 (2011): 1635–1647. Web. 11 Apr. 2012. © 2011 Mary Ann Liebert, Inc.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverDevadas, Srinivas
dc.contributor.mitauthorWaldispühl, Jerome
dc.contributor.mitauthorBerger, Bonnie
dc.contributor.mitauthorDevadas, Srinivas
dc.contributor.mitauthorO'Donnell, Charles William
dc.contributor.mitauthorShenker, Solomon
dc.relation.journalJournal of Computational Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsShenker, Solomon; O'Donnell, Charles W.; Devadas, Srinivas; Berger, Bonnie; Waldispuhl, Jeromeen
dc.identifier.orcidhttps://orcid.org/0000-0001-8253-7714
dc.identifier.orcidhttps://orcid.org/0000-0002-2724-7228
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record