MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Goodwillie tower for S[superscript 1] and Kuhn's Theorem

Author(s)
Behrens, Mark Joseph
Thumbnail
DownloadBehrens_The Goodwillie.pdf (339.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Alternative title
The Goodwillie tower for S¹ and Kuhn's Theorem
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
We analyze the homological behavior of the attaching maps in the 2–local Goodwillie tower of the identity evaluated at S¹. We show that they exhibit the same homological behavior as the James–Hopf maps used by N Kuhn to prove the 2–primary Whitehead conjecture. We use this to prove a calculus form of the Whitehead conjecture: the Whitehead sequence is a contracting homotopy for the Goodwillie tower of S¹ at the prime 2.
Date issued
2011-09
URI
http://hdl.handle.net/1721.1/70018
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Algebraic & Geometric Topology
Publisher
Mathematical Sciences Publishers
Citation
Behrens, Mark. “The Goodwillie Tower for S¹ and Kuhn’s Theorem.” Algebraic & Geometric Topology 11.4 (2011): 2453–2475. Web.
Version: Author's final manuscript
ISSN
1472-2747
1472-2739

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.