| dc.contributor.author | Wei, Fan | |
| dc.contributor.author | Dudley, Richard M. | |
| dc.date.accessioned | 2012-04-13T17:15:34Z | |
| dc.date.available | 2012-04-13T17:15:34Z | |
| dc.date.issued | 2011-11 | |
| dc.date.submitted | 2011-07 | |
| dc.identifier.issn | 0167-7152 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/70024 | |
| dc.description.abstract | The Dvoretzky–Kiefer–Wolfowitz (DKW) inequality says that if Fn is an empirical distribution function for variables i.i.d. with a distribution function F, and Kn is the Kolmogorov statistic View the MathML source, then there is a constant C such that for any M>0, Pr(Kn>M)≤Cexp(−2M2). Massart proved that one can take C=2 (DKWM inequality), which is sharp for F continuous. We consider the analogous Kolmogorov–Smirnov statistic for the two-sample case and show that for m=n, the DKW inequality holds for n≥n0 for some C depending on n0, with C=2 if and only if n0≥458.
The DKWM inequality fails for the three pairs (m,n) with 1≤m<n≤3. We found by computer search that the inequality always holds for n≥4 if 1≤m<n≤200, and further for n=2m if 101≤m≤300. We conjecture that the DKWM inequality holds for all pairs m≤n with the 457+3=460 exceptions mentioned. | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Elsevier B.V. | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1016/j.spl.2011.11.012 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
| dc.source | Prof. Dudley | en_US |
| dc.title | DVORETZKY–KIEFER–WOLFOWITZ INEQUALITIES FOR THE TWO-SAMPLE CASE | en_US |
| dc.title.alternative | Two-sample Dvoretzky–Kiefer–Wolfowitz inequalities | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Wei, Fan, and Richard M. Dudley. “Two-sample Dvoretzky–Kiefer–Wolfowitz Inequalities.” Statistics & Probability Letters 82.3 (2012): 636–644. Web. [Published in a shorter form]. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.contributor.approver | Dudley, Richard M. | |
| dc.contributor.mitauthor | Wei, Fan | |
| dc.contributor.mitauthor | Dudley, Richard M. | |
| dc.relation.journal | Statistics and Probability Letters | en_US |
| dc.eprint.version | Original manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| dspace.orderedauthors | Wei, Fan; Dudley, Richard M. | en |
| dc.identifier.orcid | https://orcid.org/0000-0002-6195-4161 | |
| mit.license | OPEN_ACCESS_POLICY | en_US |
| mit.metadata.status | Complete | |