MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inversion of long-lived trace gas emissions using combined Eulerian and Lagrangian chemical transport models

Author(s)
Manning, Alistair J.; Rigby, Matthew; Prinn, Ronald G.
Thumbnail
DownloadPrinn-2011-Inversion of long-lived trace gas.pdf (1.653Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
We present a method for estimating emissions of long-lived trace gases from a sparse global network of high-frequency observatories, using both a global Eulerian chemical transport model and Lagrangian particle dispersion model. Emissions are derived in a single step after determining sensitivities of the observations to initial conditions, the high-resolution emissions field close to observation points, and larger regions further from the measurements. This method has the several advantages over inversions using one type of model alone, in that: high-resolution simulations can be carried out in limited domains close to the measurement sites, with lower resolution being used further from them; the influence of errors due to aggregation of emissions close to the measurement sites can be minimized; assumptions about boundary conditions to the Lagrangian model do not need to be made, since the entire emissions field is estimated; any combination of appropriate models can be used, with no code modification. Because the sensitivity to the entire emissions field is derived, the estimation can be carried out using traditional statistical methods without the need for multiple steps in the inversion. We demonstrate the utility of this approach by determining global SF6 emissions using measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) between 2007 and 2009. The global total and large-scale patterns of the derived emissions agree well with previous studies, whilst allowing emissions to be determined at higher resolution than has previously been possible, and improving the agreement between the modeled and observed mole fractions at some sites.
Description
Supplement related to this article is available online at: http://www.atmos-chem-phys.net/11/9887/2011/acp-11-9887-2011-supplement.zip.
Date issued
2011-09
URI
http://hdl.handle.net/1721.1/70030
Department
Massachusetts Institute of Technology. Center for Global Change Science
Journal
Atmospheric Chemistry and Physics
Publisher
Copernicus GmbH
Citation
Rigby, M., A. J. Manning, and R. G. Prinn. “Inversion of Long-lived Trace Gas Emissions Using Combined Eulerian and Lagrangian Chemical Transport Models.” Atmospheric Chemistry and Physics 11.18 (2011): 9887–9898. Web. 13 Apr. 2012.
Version: Final published version
ISSN
1680-7324
1680-7316

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.