MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-performance genetically targetable optical neural silencing by proton pumps

Author(s)
Chow, Brian Y.; Han, Xue; Dobry, Allison S.; Qian, Xiaofeng; Chuong, Amy S.; Li, Mingjie; Henninger, Michael Alan; Belfort, Gabriel M.; Lin, Yingxi; Boyden, Edward Stuart; Monahan, Patrick Erin, III; ... Show more Show less
Thumbnail
DownloadLin-2010-High-Performance Genetically Targetable.pdf (987.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The ability to silence the activity of genetically specified neurons in a temporally precise fashion would provide the opportunity to investigate the causal role of specific cell classes in neural computations, behaviours and pathologies. Here we show that members of the class of light-driven outward proton pumps can mediate powerful, safe, multiple-colour silencing of neural activity. The gene archaerhodopsin-3 (Arch)1 from Halorubrum sodomense enables near-100% silencing of neurons in the awake brain when virally expressed in the mouse cortex and illuminated with yellow light. Arch mediates currents of several hundred picoamps at low light powers, and supports neural silencing currents approaching 900 pA at light powers easily achievable in vivo. Furthermore, Arch spontaneously recovers from light-dependent inactivation, unlike light-driven chloride pumps that enter long-lasting inactive states in response to light. These properties of Arch are appropriate to mediate the optical silencing of significant brain volumes over behaviourally relevant timescales. Arch function in neurons is well tolerated because pH excursions created by Arch illumination are minimized by self-limiting mechanisms to levels comparable to those mediated by channelrhodopsins2, 3 or natural spike firing. To highlight how proton pump ecological and genomic diversity may support new innovation, we show that the blue–green light-drivable proton pump from the fungus Leptosphaeria maculans4 (Mac) can, when expressed in neurons, enable neural silencing by blue light, thus enabling alongside other developed reagents the potential for independent silencing of two neural populations by blue versus red light. Light-driven proton pumps thus represent a high-performance and extremely versatile class of ‘optogenetic’ voltage and ion modulator, which will broadly enable new neuroscientific, biological, neurological and psychiatric investigations.
Date issued
2010-01
URI
http://hdl.handle.net/1721.1/70057
Department
Massachusetts Institute of Technology. Synthetic Neurobiology Group; Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Media Laboratory
Journal
Nature
Publisher
Nature Publishing Group
Citation
Chow, Brian Y. et al. “High-performance Genetically Targetable Optical Neural Silencing by Light-driven Proton Pumps.” Nature 463.7277 (2010): 98–102. Web.
Version: Author's final manuscript
ISSN
0028-0836
1476-4687

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.