Show simple item record

dc.contributor.authorCiti, Luca
dc.contributor.authorDjilas, Milan
dc.contributor.authorAzevedo-Coste, Christine
dc.contributor.authorYoshida, Ken
dc.contributor.authorBrown, Emery N.
dc.contributor.authorBarbieri, Riccardo
dc.date.accessioned2012-04-19T16:08:35Z
dc.date.available2012-04-19T16:08:35Z
dc.date.issued2011-08
dc.date.submitted2011-04
dc.identifier.isbn978-1-4244-4122-8
dc.identifier.issn1557-170X
dc.identifier.urihttp://hdl.handle.net/1721.1/70063
dc.description.abstractRecordings from thin-film Longitudinal Intra-Fascicular Electrodes (tfLIFE) together with a wavelet-based de-noising and a correlation-based spike sorting algorithm, give access to firing patterns of muscle spindle afferents. In this study we use a point process probability structure to assess mechanical stimulus-response characteristics of muscle spindle spike trains. We assume that the stimulus intensity is primarily a linear combination of the spontaneous firing rate, the muscle extension, and the stretch velocity. By using the ability of the point process framework to provide an objective goodness of fit analysis, we were able to distinguish two classes of spike clusters with different statistical structure. We found that spike clusters with higher SNR have a temporal structure that can be fitted by an inverse Gaussian distribution while lower SNR clusters follow a Poisson-like distribution. The point process algorithm is further able to provide the instantaneous intensity function associated with the stimulus-response model with the best goodness of fit. This important result is a first step towards a point process decoding algorithm to estimate the muscle length and possibly provide closed loop Functional Electrical Stimulation (FES) systems with natural sensory feedback information.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01-HL084502)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP1-OD003646)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/IEMBS.2011.6090581en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePubMed Centralen_US
dc.titlePoint-process analysis of neural spiking activity of muscle spindles recorded from thin-film longitudinal intrafascicular electrodesen_US
dc.typeArticleen_US
dc.identifier.citationCiti, L. et al. “Point-process Analysis of Neural Spiking Activity of Muscle Spindles Recorded from Thin-film Longitudinal Intrafascicular Electrodes.” IEEE, 2011. 2311–2314. Web.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.approverBrown, Emery N.
dc.contributor.mitauthorBrown, Emery N.
dc.contributor.mitauthorCiti, Luca
dc.contributor.mitauthorBarbieri, Riccardo
dc.relation.journalProceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2011en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCiti, L.; Djilas, M.; Azevedo-Coste, C.; Yoshida, K.; Brown, E. N.; Barbieri, R.en
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
dc.identifier.orcidhttps://orcid.org/0000-0002-6166-448X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record