Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery
Author(s)
Whitehead, Kathryn Ann; Nuhn, Lutz; Sahay, Gaurav; Cheng, Hao; Jiang, Shan; Ma, Minglin; Lytton-Jean, Abigail K. R.; Vegas, Arturo; Fenton, Patrick; Levins, Christopher G.; Lee, Haeshin; Cortez, Christina; Collins, Sean P.; Li, Ying Fei; Jang, Janice; Querbes, William; Zurenko, Christopher; Novobrantseva, Tatiana I.; Love, Kevin T; Langer, Robert S; Anderson, Daniel Griffith; Siegwart, Daniel J.; ... Show more Show less
DownloadSiegwart-2011-Aug-Combinatorial synthe.pdf (2.578Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Analogous to an assembly line, we employed a modular design for the high-throughput study of 1,536 structurally distinct nanoparticles with cationic cores and variable shells. This enabled elucidation of complexation, internalization, and delivery trends that could only be learned through evaluation of a large library. Using robotic automation, epoxide-functionalized block polymers were combinatorially cross-linked with a diverse library of amines, followed by measurement of molecular weight, diameter, RNA complexation, cellular internalization, and in vitro siRNA and pDNA delivery. Analysis revealed structure-function relationships and beneficial design guidelines, including a higher reactive block weight fraction, stoichiometric equivalence between epoxides and amines, and thin hydrophilic shells. Cross-linkers optimally possessed tertiary dimethylamine or piperazine groups and potential buffering capacity. Covalent cholesterol attachment allowed for transfection in vivo to liver hepatocytes in mice. The ability to tune the chemical nature of the core and shell may afford utility of these materials in additional applications.
Date issued
2011-08Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Chemical Engineering; Koch Institute for Integrative Cancer Research at MITJournal
Proceedings of the National Academy of Sciences of the United States of America
Publisher
National Academy of Sciences (U.S.)
Citation
Siegwart, D. J. et al. “Combinatorial Synthesis of Chemically Diverse Core-shell Nanoparticles for Intracellular Delivery.” Proceedings of the National Academy of Sciences 108.32 (2011): 12996–13001. Web.
Version: Final published version
ISSN
0027-8424
1091-6490