Show simple item record

dc.contributor.authorNguyen, David P.
dc.contributor.authorWilson, Matthew A.
dc.contributor.authorBrown, Emery N.
dc.contributor.authorBarbieri, Riccardo
dc.date.accessioned2012-04-20T16:55:23Z
dc.date.available2012-04-20T16:55:23Z
dc.date.issued2009-08
dc.date.submitted2009-07
dc.identifier.issn0165-0270
dc.identifier.urihttp://hdl.handle.net/1721.1/70085
dc.description.abstractRhythmic local field potentials (LFPs) arise from coordinated neural activity. Inference of neural function based on the properties of brain rhythms remains a challenging data analysis problem. Algorithms that characterize non-stationary rhythms with high temporal and spectral resolution may be useful for interpreting LFP activity on the timescales in which they are generated. We propose a Kalman smoother based dynamic autoregressive model for tracking the instantaneous frequency (iFreq) and frequency modulation (FM) of noisy and non-stationary sinusoids such as those found in LFP data. We verify the performance of our algorithm using simulated data with broad spectral content, and demonstrate its application using real data recorded from behavioral learning experiments. In analyses of ripple oscillations (100–250 Hz) recorded from the rodent hippocampus, our algorithm identified novel repetitive, short timescale frequency dynamics. Our results suggest that iFreq and FM may be useful measures for the quantification of small timescale LFP dynamics.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH/NIMH R01 MH59733)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH/NIHLB R01 HL084502)en_US
dc.description.sponsorshipMassachusetts Institute of Technology (Henry E. Singleton Presidential Graduate Fellowship Award)en_US
dc.language.isoen_US
dc.publisherElsevier B.V.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jneumeth.2009.08.012en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePubMed Centralen_US
dc.titleMeasuring Instantaneous Frequency of Local Field Potential Oscillations using the Kalman Smootheren_US
dc.typeArticleen_US
dc.identifier.citationNguyen, David P. et al. “Measuring Instantaneous Frequency of Local Field Potential Oscillations Using the Kalman Smoother.” Journal of Neuroscience Methods 184.2 (2009): 365–374. Web.en_US
dc.contributor.departmentWhitaker College of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.approverBrown, Emery N.
dc.contributor.mitauthorBrown, Emery N.
dc.contributor.mitauthorNguyen, David P.
dc.contributor.mitauthorWilson, Matthew A.
dc.contributor.mitauthorBarbieri, Riccardo
dc.relation.journalJournal of Neuroscience Methodsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsNguyen, David P.; Wilson, Matthew A.; Brown, Emery N.; Barbieri, Riccardoen
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
dc.identifier.orcidhttps://orcid.org/0000-0002-6166-448X
dc.identifier.orcidhttps://orcid.org/0000-0001-7149-3584
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record