Show simple item record

dc.contributor.authorDoshi-Velez, Finale P.
dc.contributor.authorWingate, David
dc.contributor.authorTenenbaum, Joshua B.
dc.contributor.authorRoy, Nicholas
dc.date.accessioned2012-04-25T14:41:31Z
dc.date.available2012-04-25T14:41:31Z
dc.date.issued2011-06
dc.identifier.isbn9781450306195
dc.identifier.urihttp://hdl.handle.net/1721.1/70126
dc.description.abstractWe present the infinite dynamic Bayesian network model (iDBN), a nonparametric, factored state-space model that generalizes dynamic Bayesian networks (DBNs). The iDBN can infer every aspect of a DBN: the number of hidden factors, the number of values each factor can take, and (arbitrarily complex) connections and conditionals between factors and observations. In this way, the iDBN generalizes other nonparametric state space models, which until now generally focused on binary hidden nodes and more restricted connection structures. We show how this new prior allows us to find interesting structure in benchmark tests and on two realworld datasets involving weather data and neural information flow networks.en_US
dc.description.sponsorshipMassachusetts Institute of Technology (Hugh Hampton Young Memorial Fund Fellowship)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (AFOSR FA9550-07-1-0075)en_US
dc.language.isoen_US
dc.publisherInternational Machine Learning Societyen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleInfinite dynamic bayesian networksen_US
dc.typeArticleen_US
dc.identifier.citationDoshi-Velez, Finale, David Wingate, Joshua Tenenbaum and Nicholas Roy. "Infinite Dynamic Bayesian Networks." The 28th International Conference on Machine Learning, Bellevue, WA, USA, June 28-July 2, 2011,en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.approverTenenbaum, Joshua B.
dc.contributor.mitauthorTenenbaum, Joshua B.
dc.contributor.mitauthorWingate, David
dc.contributor.mitauthorDoshi-Velez, Finale P.
dc.contributor.mitauthorRoy, Nicholas
dc.relation.journalProceedings of the 28th International Conference on Machine Learning (ICML 2011)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsDoshi-Velez, Finale; Wingate, David; Tenenbaum, Joshua; Roy, Nicholasen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1925-2035
dc.identifier.orcidhttps://orcid.org/0000-0002-8293-0492
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record