Show simple item record

dc.contributor.authorPark, Daniel Kyu
dc.contributor.authorSingh, Rohit
dc.contributor.authorBaym, Michael Hartmann
dc.contributor.authorLiao, Chung-Shou
dc.contributor.authorBerger, Bonnie
dc.date.accessioned2012-04-25T19:20:03Z
dc.date.available2012-04-25T19:20:03Z
dc.date.issued2011-01
dc.date.submitted2010-10
dc.identifier.issn0305-1048
dc.identifier.issn1362-4962
dc.identifier.urihttp://hdl.handle.net/1721.1/70134
dc.description.abstractWe describe IsoBase, a database identifying functionally related proteins, across five major eukaryotic model organisms: Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, Mus musculus and Homo Sapiens. Nearly all existing algorithms for orthology detection are based on sequence comparison. Although these have been successful in orthology prediction to some extent, we seek to go beyond these methods by the integration of sequence data and protein–protein interaction (PPI) networks to help in identifying true functionally related proteins. With that motivation, we introduce IsoBase, the first publicly available ortholog database that focuses on functionally related proteins. The groupings were computed using the IsoRankN algorithm that uses spectral methods to combine sequence and PPI data and produce clusters of functionally related proteins. These clusters compare favorably with those from existing approaches: proteins within an IsoBase cluster are more likely to share similar Gene Ontology (GO) annotation. A total of 48 120 proteins were clustered into 12 693 functionally related groups. The IsoBase database may be browsed for functionally related proteins across two or more species and may also be queried by accession numbers, species-specific identifiers, gene name or keyword. The database is freely available for download at http://isobase.csail.mit.edu/.en_US
dc.description.sponsorshipNational Institute of General Medical Sciences (U.S.) (Grant Number 1R01GM081871)en_US
dc.description.sponsorshipFannie and John Hertz Foundationen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF MSPRF)en_US
dc.description.sponsorshipNational Science Council of Taiwan (NSC99-2218-E-007-010)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (1R01GM081871)en_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/nar/gkq1234en_US
dc.rightsCreative Commons Attribution Non-Commercial Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/ by-nc/2.5en_US
dc.sourceOxford University Pressen_US
dc.titleIsoBase: a database of functionally related proteins across PPI networksen_US
dc.typeArticleen_US
dc.identifier.citationPark, D. et al. “IsoBase: a Database of Functionally Related Proteins Across PPI Networks.” Nucleic Acids Research 39.Database (2010): D295–D300. Web.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computational and Systems Biology Programen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverBerger, Bonnie
dc.contributor.mitauthorSingh, Rohit
dc.contributor.mitauthorBaym, Michael Hartmann
dc.contributor.mitauthorPark, Daniel Kyu
dc.contributor.mitauthorBerger, Bonnie
dc.relation.journalNucleic Acids Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsPark, D.; Singh, R.; Baym, M.; Liao, C.-S.; Berger, B.en
dc.identifier.orcidhttps://orcid.org/0000-0003-1303-5598
dc.identifier.orcidhttps://orcid.org/0000-0002-2724-7228
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record