MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiple-spin coherence transfer in linear Ising spin chains and beyond: Numerically optimized pulses and experiments

Author(s)
Nimbalka, Manoj; Zeier, Robert; Neves, Jorge L.; Elavarasi, S. Begam; Khaneja, Navin; Dorai, Kavita; Glaser, Steffen J.; Yuan, Haidong; ... Show more Show less
Thumbnail
DownloadNimbalker-2012-Multiple-spin coherence transfer.pdf (1.849Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study multiple-spin coherence transfers in linear Ising spin chains with nearest-neighbor couplings. These constitute a model for efficient information transfers in future quantum computing devices and for many multidimensional experiments for the assignment of complex spectra in nuclear magnetic resonance spectroscopy. We complement prior analytic techniques for multiple-spin coherence transfers with a systematic numerical study where we obtain strong evidence that a certain analytically motivated family of restricted controls is sufficient for time optimality. In the case of a linear three-spin system, additional evidence suggests that prior analytic pulse sequences using this family of restricted controls are time optimal even for arbitrary local controls. In addition, we compare the pulse sequences for linear Ising spin chains to pulse sequences for more realistic spin systems with additional long-range couplings between nonadjacent spins. We experimentally implement the derived pulse sequences in three- and four-spin systems and demonstrate that they are applicable in realistic settings under relaxation and experimental imperfections—in particular—by deriving broadband pulse sequences which are robust with respect to frequency offsets.
Date issued
2012-01
URI
http://hdl.handle.net/1721.1/70463
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Physical Review A
Publisher
American Physical Society
Citation
Nimbalkar, Manoj et al. “Multiple-spin Coherence Transfer in Linear Ising Spin Chains and Beyond: Numerically Optimized Pulses and Experiments.” Physical Review A 85.1 (2012): Web. 27 Apr. 2012. © 2012 American Physical Society
Version: Final published version
ISSN
1050-2947
1094-1622

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.