A Tutorial on Text-Independent Speaker Verification
Author(s)
Bimbot, Frederic; Bonastre, Jean-François; Fredouille, Corinne; Gravier, Guillaume; Magrin-Chagnolleau, Ivan; Meignier, Sylvain; Merlin, Teva; Javier, Ortega-Garcia; Petrovska-Delacretaz, Dijana; Reynolds, Douglas A.; ... Show more Show less
Download1687-6180-2004-101962.pdf (1.116Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Metadata
Show full item recordAbstract
This paper presents an overview of a state-of-the-art text-independent speaker verification system. First, an introduction proposes a modular scheme of the training and test phases of a speaker verification system. Then, the most commonly speech parameterization used in speaker verification, namely, cepstral analysis, is detailed. Gaussian mixture modeling, which is the speaker modeling technique used in most systems, is then explained. A few speaker modeling alternatives, namely, neural networks and support vector machines, are mentioned. Normalization of scores is then explained, as this is a very important step to deal with real-world data. The evaluation of a speaker verification system is then detailed, and the detection error trade-off (DET) curve is explained. Several extensions of speaker verification are then enumerated, including speaker tracking and segmentation by speakers. Then, some applications of speaker verification are proposed, including on-site applications, remote applications, applications relative to structuring audio information, and games. Issues concerning the forensic area are then recalled, as we believe it is very important to inform people about the actual performance and limitations of speaker verification systems. This paper concludes by giving a few research trends in speaker verification for the next couple of years.
Date issued
2004-04Department
Lincoln LaboratoryJournal
EURASIP Journal on Advances in Signal Processing
Publisher
Springer
Citation
Bimbot, Frédéric et al. “A Tutorial on Text-Independent Speaker Verification.” EURASIP Journal on Advances in Signal Processing 2004.4 (2004): 430-451. Web.
Version: Author's final manuscript
ISSN
1110-8657
1687-0433