Show simple item record

dc.contributor.authorKim, Sunghwan
dc.contributor.authorSideris, Polixeni Dionisia
dc.contributor.authorSevier, Carolyn S.
dc.contributor.authorKaiser, Chris
dc.date.accessioned2012-05-04T20:57:47Z
dc.date.available2012-05-04T20:57:47Z
dc.date.issued2012-03
dc.date.submitted2011-10
dc.identifier.issn0021-9525
dc.identifier.issn1540-8140
dc.identifier.urihttp://hdl.handle.net/1721.1/70516
dc.description.abstractThe endoplasmic reticulum (ER) provides an environment optimized for oxidative protein folding through the action of Ero1p, which generates disulfide bonds, and Pdi1p, which receives disulfide bonds from Ero1p and transfers them to substrate proteins. Feedback regulation of Ero1p through reduction and oxidation of regulatory bonds within Ero1p is essential for maintaining the proper redox balance in the ER. In this paper, we show that Pdi1p is the key regulator of Ero1p activity. Reduced Pdi1p resulted in the activation of Ero1p by direct reduction of Ero1p regulatory bonds. Conversely, upon depletion of thiol substrates and accumulation of oxidized Pdi1p, Ero1p was inactivated by both autonomous oxidation and Pdi1p-mediated oxidation of Ero1p regulatory bonds. Pdi1p responded to the availability of free thiols and the relative levels of reduced and oxidized glutathione in the ER to control Ero1p activity and ensure that cells generate the minimum number of disulfide bonds needed for efficient oxidative protein folding.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (GM46941)en_US
dc.language.isoen_US
dc.publisherRockefeller University Press, Theen_US
dc.relation.isversionofhttp://dx.doi.org/10.1083/jcb.201110090en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0 Unporteden_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceRockefeller UPen_US
dc.titleBalanced Ero1 activation and inactivation establishes ER redox homeostasisen_US
dc.typeArticleen_US
dc.identifier.citationKim, S. et al. “Balanced Ero1 Activation and Inactivation Establishes ER Redox Homeostasis.” The Journal of Cell Biology 196.6 (2012): 713–725. Web. 4 May 2012.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.approverSunghwan, Kim
dc.contributor.mitauthorKim, Sunghwan
dc.contributor.mitauthorSideris, Polixeni Dionisia
dc.contributor.mitauthorSevier, Carolyn S.
dc.contributor.mitauthorKaiser, Chris
dc.relation.journalJournal of Cell Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKim, S.; Sideris, D. P.; Sevier, C. S.; Kaiser, C. A.en
dc.identifier.orcidhttps://orcid.org/0000-0002-1505-0479
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record