dc.contributor.author | Bezrukavnikov, Roman | |
dc.contributor.author | Finkelberg, Michael | |
dc.contributor.author | Ostrik, Viktor | |
dc.date.accessioned | 2012-05-04T22:02:43Z | |
dc.date.available | 2012-05-04T22:02:43Z | |
dc.date.issued | 2011-09 | |
dc.date.submitted | 2010-06 | |
dc.identifier.issn | 0020-9910 | |
dc.identifier.issn | 1432-1297 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/70519 | |
dc.description.abstract | The category of character D-modules is realized as Drinfeld center of the abelian monoidal category of Harish-Chandra bimodules. Tensor product of Harish-Chandra bimodules is related to convolution of D-modules via the long intertwining functor (Radon transform) by a result of Beilinson and Ginzburg (Represent. Theory 3, 1–31, 1999). Exactness property of the long intertwining functor on a cell subquotient of the Harish-Chandra bimodules category shows that the truncated convolution category of Lusztig (Adv. Math. 129, 85–98, 1997) can be realized as a subquotient of the category of Harish-Chandra bimodules. Together with the description of the truncated convolution category (Bezrukavnikov et al. in Isr. J. Math. 170, 207–234, 2009) this allows us to derive (under a mild technical assumption) a classification of irreducible character sheaves over ℂ obtained by Lusztig by a different method.
We also give a simple description for the top cohomology of convolution of character sheaves over ℂ in a given cell modulo smaller cells and relate the so-called Harish-Chandra functor to Verdier specialization in the De Concini–Procesi compactification. | en_US |
dc.description.sponsorship | United States. Defense Advanced Research Projects Agency (grant HR0011-04-1-0031) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (grant DMS-0625234) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (grant DMS-0854764) | en_US |
dc.description.sponsorship | AG Laboratory HSE (RF government grant, ag. 11.G34.31.0023) | en_US |
dc.description.sponsorship | Russian Foundation for Basic Research (grant 09-01-00242) | en_US |
dc.description.sponsorship | Ministry of Education and Science of the Russian Federation (grant No. 2010-1.3.1-111-017-029) | en_US |
dc.description.sponsorship | Science Foundation of the NRU-HSE (award 11-09-0033) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (grant DMS-0602263) | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer-Verlag | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00222-011-0354-3 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Character D-modules via Drinfeld center of Harish-Chandra bimodules | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Bezrukavnikov, Roman, Michael Finkelberg, and Victor Ostrik. “Character D-modules via Drinfeld Center of Harish-Chandra Bimodules.” Inventiones mathematicae (2011): n. pag. Web. 4 May 2012. © 2011 Springer-Verlag | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.approver | Bezrukavnikov, Roman | |
dc.contributor.mitauthor | Bezrukavnikov, Roman | |
dc.relation.journal | Inventiones Mathematicae | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Bezrukavnikov, Roman; Finkelberg, Michael; Ostrik, Victor | en |
dc.identifier.orcid | https://orcid.org/0000-0001-5902-8989 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |