Show simple item record

dc.contributor.authorBezrukavnikov, Roman
dc.contributor.authorFinkelberg, Michael
dc.contributor.authorOstrik, Viktor
dc.date.accessioned2012-05-04T22:02:43Z
dc.date.available2012-05-04T22:02:43Z
dc.date.issued2011-09
dc.date.submitted2010-06
dc.identifier.issn0020-9910
dc.identifier.issn1432-1297
dc.identifier.urihttp://hdl.handle.net/1721.1/70519
dc.description.abstractThe category of character D-modules is realized as Drinfeld center of the abelian monoidal category of Harish-Chandra bimodules. Tensor product of Harish-Chandra bimodules is related to convolution of D-modules via the long intertwining functor (Radon transform) by a result of Beilinson and Ginzburg (Represent. Theory 3, 1–31, 1999). Exactness property of the long intertwining functor on a cell subquotient of the Harish-Chandra bimodules category shows that the truncated convolution category of Lusztig (Adv. Math. 129, 85–98, 1997) can be realized as a subquotient of the category of Harish-Chandra bimodules. Together with the description of the truncated convolution category (Bezrukavnikov et al. in Isr. J. Math. 170, 207–234, 2009) this allows us to derive (under a mild technical assumption) a classification of irreducible character sheaves over ℂ obtained by Lusztig by a different method. We also give a simple description for the top cohomology of convolution of character sheaves over ℂ in a given cell modulo smaller cells and relate the so-called Harish-Chandra functor to Verdier specialization in the De Concini–Procesi compactification.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (grant HR0011-04-1-0031)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant DMS-0625234)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant DMS-0854764)en_US
dc.description.sponsorshipAG Laboratory HSE (RF government grant, ag. 11.G34.31.0023)en_US
dc.description.sponsorshipRussian Foundation for Basic Research (grant 09-01-00242)en_US
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation (grant No. 2010-1.3.1-111-017-029)en_US
dc.description.sponsorshipScience Foundation of the NRU-HSE (award 11-09-0033)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant DMS-0602263)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00222-011-0354-3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleCharacter D-modules via Drinfeld center of Harish-Chandra bimodulesen_US
dc.typeArticleen_US
dc.identifier.citationBezrukavnikov, Roman, Michael Finkelberg, and Victor Ostrik. “Character D-modules via Drinfeld Center of Harish-Chandra Bimodules.” Inventiones mathematicae (2011): n. pag. Web. 4 May 2012. © 2011 Springer-Verlagen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverBezrukavnikov, Roman
dc.contributor.mitauthorBezrukavnikov, Roman
dc.relation.journalInventiones Mathematicaeen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBezrukavnikov, Roman; Finkelberg, Michael; Ostrik, Victoren
dc.identifier.orcidhttps://orcid.org/0000-0001-5902-8989
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record