Show simple item record

dc.contributor.authorBrubaker, Benjamin Brock
dc.contributor.authorBump, Daniel
dc.contributor.authorFriedberg, Solomon
dc.date.accessioned2012-05-07T19:16:59Z
dc.date.available2012-05-07T19:16:59Z
dc.date.issued2011-05
dc.date.submitted2010-01
dc.identifier.issn0010-3616
dc.identifier.issn1432-0916
dc.identifier.urihttp://hdl.handle.net/1721.1/70528
dc.description.abstractWe describe a parametrized Yang-Baxter equation with nonabelian parameter group. That is, we show that there is an injective map gR(g) from GL(2C)GL(1C) to End (VV) , where V is a two-dimensional vector space such that if ghG then R 12(g)R 13(gh) R 23(h) = R 23(h) R 13(gh)R 12(g). Here R i j denotes R applied to the i, j components of VVV . The image of this map consists of matrices whose nonzero coefficients a 1, a 2, b 1, b 2, c 1, c 2 are the Boltzmann weights for the non-field-free six-vertex model, constrained to satisfy a 1 a 2 + b 1 b 2 − c 1 c 2 = 0. This is the exact center of the disordered regime, and is contained within the free fermionic eight-vertex models of Fan and Wu. As an application, we show that with boundary conditions corresponding to integer partitions λ, the six-vertex model is exactly solvable and equal to a Schur polynomial sλ times a deformation of the Weyl denominator. This generalizes and gives a new proof of results of Tokuyama and Hamel and King.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant DMS-0652609)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMS-0652817)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMS-0652529)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMS-0702438)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMS-1001079)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMS-1001326)en_US
dc.description.sponsorshipUnited States. Dept. of Defense (National Security Agency grant H98230-10-1-0183)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00220-011-1345-3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleSchur Polynomials and The Yang-Baxter Equationen_US
dc.typeArticleen_US
dc.identifier.citationBrubaker, Ben, Daniel Bump, and Solomon Friedberg. “Schur Polynomials and The Yang-Baxter Equation.” Communications in Mathematical Physics 308.2 (2011): 281–301. Web.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverBrubaker, Benjamin Brock
dc.contributor.mitauthorBrubaker, Benjamin Brock
dc.relation.journalCommunications in Mathematical Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBrubaker, Ben; Bump, Daniel; Friedberg, Solomonen
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record