dc.contributor.author | Brubaker, Benjamin Brock | |
dc.contributor.author | Bump, Daniel | |
dc.contributor.author | Friedberg, Solomon | |
dc.date.accessioned | 2012-05-07T19:16:59Z | |
dc.date.available | 2012-05-07T19:16:59Z | |
dc.date.issued | 2011-05 | |
dc.date.submitted | 2010-01 | |
dc.identifier.issn | 0010-3616 | |
dc.identifier.issn | 1432-0916 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/70528 | |
dc.description.abstract | We describe a parametrized Yang-Baxter equation with nonabelian parameter group. That is, we show that there is an injective map gR(g) from GL(2C)GL(1C) to End (VV) , where V is a two-dimensional vector space such that if ghG then R 12(g)R 13(gh) R 23(h) = R 23(h) R 13(gh)R 12(g). Here R i j denotes R applied to the i, j components of VVV . The image of this map consists of matrices whose nonzero coefficients a 1, a 2, b 1, b 2, c 1, c 2 are the Boltzmann weights for the non-field-free six-vertex model, constrained to satisfy a 1 a 2 + b 1 b 2 − c 1 c 2 = 0. This is the exact center of the disordered regime, and is contained within the free fermionic eight-vertex models of Fan and Wu. As an application, we show that with boundary conditions corresponding to integer partitions λ, the six-vertex model is exactly solvable and equal to a Schur polynomial sλ times a deformation of the Weyl denominator. This generalizes and gives a new proof of results of Tokuyama and Hamel and King. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (NSF grant DMS-0652609) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (DMS-0652817) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (DMS-0652529) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (DMS-0702438) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (DMS-1001079) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (DMS-1001326) | en_US |
dc.description.sponsorship | United States. Dept. of Defense (National Security Agency grant H98230-10-1-0183) | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer-Verlag | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00220-011-1345-3 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Schur Polynomials and The Yang-Baxter Equation | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Brubaker, Ben, Daniel Bump, and Solomon Friedberg. “Schur Polynomials and The Yang-Baxter Equation.” Communications in Mathematical Physics 308.2 (2011): 281–301. Web. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.approver | Brubaker, Benjamin Brock | |
dc.contributor.mitauthor | Brubaker, Benjamin Brock | |
dc.relation.journal | Communications in Mathematical Physics | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Brubaker, Ben; Bump, Daniel; Friedberg, Solomon | en |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |