MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational and statistical approaches to analyzing variants identified by exome sequencing

Author(s)
Stitziel, Nathan O.; Kiezun, Adam; Sunyaev, Shamil R.
Thumbnail
DownloadStitziel-2011-Computational and st.pdf (491.5Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/2.0
Metadata
Show full item record
Abstract
New sequencing technology has enabled the identification of thousands of single nucleotide polymorphisms in the exome, and many computational and statistical approaches to identify disease-association signals have emerged.
Date issued
2011-09
URI
http://hdl.handle.net/1721.1/70574
Department
Harvard University--MIT Division of Health Sciences and Technology
Journal
Genome Biology
Publisher
BioMed Central Ltd.
Citation
Stitziel, Nathan O, Adam Kiezun, and Shamil Sunyaev. “Computational and Statistical Approaches to Analyzing Variants Identified by Exome Sequencing.” Genome Biology 12.9 (2011): 227. Web.
Version: Final published version
ISSN
1465-6906
1474-7596

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.