Show simple item record

dc.contributor.authorChen, Zhe
dc.contributor.authorVijayan, Sujith
dc.contributor.authorBarbieri, Riccardo
dc.contributor.authorWilson, Matthew A.
dc.contributor.authorBrown, Emery N.
dc.date.accessioned2012-05-16T16:12:27Z
dc.date.available2012-05-16T16:12:27Z
dc.date.issued2009-07
dc.identifier.issn0899-7667
dc.identifier.issn1530-888X
dc.identifier.urihttp://hdl.handle.net/1721.1/70846
dc.description.abstractUP and DOWN states, the periodic fluctuations between increased and decreased spiking activity of a neuronal population, are a fundamental feature of cortical circuits. Understanding UP-DOWN state dynamics is important for understanding how these circuits represent and transmit information in the brain. To date, limited work has been done on characterizing the stochastic properties of UP-DOWN state dynamics. We present a set of Markov and semi-Markov discrete- and continuous-time probability models for estimating UP and DOWN states from multiunit neural spiking activity. We model multiunit neural spiking activity as a stochastic point process, modulated by the hidden (UP and DOWN) states and the ensemble spiking history. We estimate jointly the hidden states and the model parameters by maximum likelihood using an expectation-maximization (EM) algorithm and a Monte Carlo EM algorithm that uses reversible-jump Markov chain Monte Carlo sampling in the E-step. We apply our models and algorithms in the analysis of both simulated multiunit spiking activity and actual multi- unit spiking activity recorded from primary somatosensory cortex in a behaving rat during slow-wave sleep. Our approach provides a statistical characterization of UP-DOWN state dynamics that can serve as a basis for verifying and refining mechanistic descriptions of this process.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01-DA015644)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Director Pioneer Award DP1- OD003646)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH/NHLBI grant R01-HL084502)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH institutional NRSA grant T32 HL07901)en_US
dc.language.isoen_US
dc.publisherMIT Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1162/neco.2009.06-08-799en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePubMed Centralen_US
dc.titleDiscrete- and Continuous-Time Probabilistic Models and Algorithms for Inferring Neuronal UP and DOWN Statesen_US
dc.typeArticleen_US
dc.identifier.citationChen, Zhe et al. “Discrete- and Continuous-Time Probabilistic Models and Algorithms for Inferring Neuronal UP and DOWN States.” Neural Computation 21.7 (2009): 1797–1862. Web.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.approverBrown, Emery N.
dc.contributor.mitauthorChen, Zhe
dc.contributor.mitauthorVijayan, Sujith
dc.contributor.mitauthorBarbieri, Riccardo
dc.contributor.mitauthorWilson, Matthew A.
dc.contributor.mitauthorBrown, Emery N.
dc.relation.journalNeural Computationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChen, Zhe; Vijayan, Sujith; Barbieri, Riccardo; Wilson, Matthew A.; Brown, Emery N.en
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
dc.identifier.orcidhttps://orcid.org/0000-0002-6166-448X
dc.identifier.orcidhttps://orcid.org/0000-0001-7149-3584
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record