IsoRankN: spectral methods for global alignment of multiple protein networks
Author(s)
Liao, Chung-Shou; Lu, Kanghao; Baym, Michael Hartmann; Singh, Rohit
DownloadLiao-2009-IsoRankN.pdf (267.0Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Motivation: With the increasing availability of large protein–protein interaction networks, the question of protein network alignment is becoming central to systems biology. Network alignment is further delineated into two sub-problems: local alignment, to find small conserved motifs across networks, and global alignment, which attempts to find a best mapping between all nodes of the two networks. In this article, our aim is to improve upon existing global alignment results. Better network alignment will enable, among other things, more accurate identification of functional orthologs across species.
Results: We introduce IsoRankN (IsoRank-Nibble) a global multiple-network alignment tool based on spectral clustering on the induced graph of pairwise alignment scores. IsoRankN outperforms existing algorithms for global network alignment in coverage and consistency on multiple alignments of the five available eukaryotic networks. Being based on spectral methods, IsoRankN is both error tolerant and computationally efficient.
Date issued
2009-06Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of MathematicsJournal
Bioinformatics
Publisher
Oxford University Press
Citation
Liao, C.-S. et al. “IsoRankN: Spectral Methods for Global Alignment of Multiple Protein Networks.” Bioinformatics 25.12 (2009): i253–i258. Web.
Version: Final published version
ISSN
1367-4803
1460-2059