Show simple item record

dc.contributor.authorElvang, Henriette
dc.contributor.authorFreedman, Daniel Z.
dc.contributor.authorKiermaier, Michael
dc.date.accessioned2012-06-01T15:49:49Z
dc.date.available2012-06-01T15:49:49Z
dc.date.issued2010-10
dc.date.submitted2010-09
dc.identifier.issn1126-6708
dc.identifier.issn1029-8479
dc.identifier.urihttp://hdl.handle.net/1721.1/70983
dc.description.abstractSupersymmetry and R-symmetry Ward identities relate on-shell amplitudes in a supersymmetric field theory. We solve these Ward identities for N [superscript K] MHV amplitudes of the maximally supersymmetric =4 and =8 theories. The resulting superamplitude is written in a new, manifestly supersymmetric and [subscript R]-invariant form: it is expressed as a sum of very simple SUSY and SUR -invariant Grassmann polynomials, each multiplied by a “basis amplitude”. For N [superscript K] MHV n-point superamplitudes the number of basis amplitudes is equal to the dimension of the irreducible representation of SU(n − 4) corresponding to the rectangular Young diagram with columns and K rows. The linearly independent amplitudes in this algebraic basis may still be functionally related by permutation of momenta. We show how cyclic and reflection symmetries can be used to obtain a smaller functional basis of color-ordered single-trace amplitudes in =4 gauge theory. We also analyze the more significant reduction that occurs in =8 supergravity because gravity amplitudes are not ordered. All results are valid at both tree and loop level.en_US
dc.language.isoen_US
dc.publisherSpringer Science + Business Media B.V.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/jhep10(2010)103en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleSolution to the Ward identities for superamplitudesen_US
dc.typeArticleen_US
dc.identifier.citationElvang, Henriette, Daniel Z. Freedman, and Michael Kiermaier. “Solution to the Ward Identities for Superamplitudes.” Journal of High Energy Physics 2010.10 (2010): 1-34.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverFreedman, Daniel Z.
dc.contributor.mitauthorFreedman, Daniel Z.
dc.relation.journalJournal of High Energy Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsElvang, Henriette; Freedman, Daniel Z.; Kiermaier, Michaelen
dc.identifier.orcidhttps://orcid.org/0000-0001-8408-1941
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record