Show simple item record

dc.contributor.authorKelner, Jonathan Adam
dc.contributor.authorLee, James R.
dc.contributor.authorPrice, Gregory N.
dc.contributor.authorTeng, Shang-Hua
dc.date.accessioned2012-06-01T18:25:24Z
dc.date.available2012-06-01T18:25:24Z
dc.date.issued2011-08
dc.identifier.issn1016-443X
dc.identifier.issn1420-8970
dc.identifier.urihttp://hdl.handle.net/1721.1/70991
dc.description.abstractWe present a method for proving upper bounds on the eigenvalues of the graph Laplacian. A main step involves choosing an appropriate 'Riemannian' metric to uniformize the geometry of the graph. In many interesting cases, the existence of such a metric is shown by examining the combinatorics of special types of flows. This involves proving new inequalities on the crossing number of graphs. In particular, we use our method to show that for any positive integer k, the k [superscript th] smallest eigenvalue of the Laplacian on an n-vertex, bounded-degree planar graph is O(k/n). This bound is asymptotically tight for every k, as it is easily seen to be achieved for square planar grids. We also extend this spectral result to graphs with bounded genus, and graphs which forbid fixed minors. Previously, such spectral upper bounds were only known for the case k = 2.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant CCF-0843915)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant CCF-0915251)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant CCF-0644037)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Graduate Research Fellowship)en_US
dc.description.sponsorshipAkamai Technologies, Inc.en_US
dc.description.sponsorshipAlfred P. Sloan Foundation (Research Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant CCF-0635102)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant CCF-0964481)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CCF-1111270)en_US
dc.language.isoen_US
dc.publisherSpringer Science + Business Media B.V.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00039-011-0132-9en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleMetric uniformization and spectral bounds for graphsen_US
dc.typeArticleen_US
dc.identifier.citationKelner, Jonathan A. et al. “Metric Uniformization and Spectral Bounds for Graphs.” Geometric and Functional Analysis 21.5 (2011): 1117–1143. Web.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverKelner, Jonathan Adam
dc.contributor.mitauthorKelner, Jonathan Adam
dc.contributor.mitauthorPrice, Gregory N.
dc.relation.journalGeometric and Functional Analysisen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKelner, Jonathan A.; Lee, James R.; Price, Gregory N.; Teng, Shang-Huaen
dc.identifier.orcidhttps://orcid.org/0000-0002-4257-4198
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record