Show simple item record

dc.contributor.authorTsitsiklis, John N.
dc.contributor.authorRusmevichientong, Paat
dc.date.accessioned2012-06-04T18:10:35Z
dc.date.available2012-06-04T18:10:35Z
dc.date.issued2010-01
dc.date.submitted2010-05
dc.identifier.issn0364-765X
dc.identifier.issn1526-5471
dc.identifier.urihttp://hdl.handle.net/1721.1/71016
dc.description.abstractWe consider bandit problems involving a large (possibly infinite) collection of arms, in which the expected reward of each arm is a linear function of an r-dimensional random vector Z ∈ ℝ(superscript r), where r ≥ 2. The objective is to minimize the cumulative regret and Bayes risk. When the set of arms corresponds to the unit sphere, we prove that the regret and Bayes risk is of order Θ(r √T), by establishing a lower bound for an arbitrary policy, and showing that a matching upper bound is obtained through a policy that alternates between exploration and exploitation phases. The phase-based policy is also shown to be effective if the set of arms satisfies a strong convexity condition. For the case of a general set of arms, we describe a near-optimal policy whose regret and Bayes risk admit upper bounds of the form O(r √T log(superscript 3/2)T).en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant DMS-0732196)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant ECCS-0701623)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant CMMI-0856063)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant CMMI-0855928)en_US
dc.language.isoen_US
dc.publisherINFORMSen_US
dc.relation.isversionofhttp://dx.doi.org/10.1287/moor.1100.0446en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceTsitsiklis via Amy Stouten_US
dc.titleLinearly parameterized banditsen_US
dc.typeArticleen_US
dc.identifier.citationRusmevichientong, P., and J. N. Tsitsiklis. “Linearly Parameterized Bandits.” Mathematics of Operations Research 35.2 (2010): 395-411.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverTsitsiklis, John N.
dc.contributor.mitauthorTsitsiklis, John N.
dc.relation.journalMathematics of Operations Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRusmevichientong, P.; Tsitsiklis, J. N.en
dc.identifier.orcidhttps://orcid.org/0000-0003-2658-8239
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record