MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detecting robust time-delayed regulation in Mycobacterium tuberculosis

Author(s)
Chaturvedi, Iti; Rajapakse, Jagath
Thumbnail
Download1471-2164-10-S3-S28.pdf (1.386Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/2.0
Metadata
Show full item record
Abstract
Background: Time delays are often found in gene regulation though most techniques of building gene regulatory networks are not capable of capturing such phenomena. Here we look at the delays in the DNA repair system of Mycobacterium tuberculosis which is unusually slow in the bacteria. We propose a method based on a skip-chain model to study this phenomena in gene networks. The Viterbi paths of the underlying Markov chains find the most likely regulatory interactions among genes, taking care of very long delays. Using the derived networks, we discuss the delayed regulations and robustness of the DNA damage seen in the bacterium. Results: We evaluated our method on time-course gene expressions after DNA damage with Mitocyin C. Several time-delayed interactions were observed with our analysis. The presence of hubs in the networks indicates that a small number of transcriptional factors regulate the rest of the system. We demonstrate the use of priors to overcome over-fitting problem in the generation of networks. We compare our results with the gene networks derived with dynamic Bayesian networks (DBN). Conclusion: Different transcription networks are active at different stages, and constant feedback and regulation is maintained throughout the activities of a biological pathway. Skip-chain models are capable of capturing, long distant and the time-delayed regulations. Use of a Dirichlet prior over parameters and Gibbs prior over structure can greatly reduce the over-fitting in the new model.
Date issued
2009-12
URI
http://hdl.handle.net/1721.1/71128
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
BMC Genomics
Publisher
BioMed Central Ltd
Citation
BMC Genomics. 2009 Dec 03;10(Suppl 3):S28
Version: Final published version
ISSN
1471-2164

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.