Show simple item record

dc.contributor.authorLusztig, George
dc.contributor.author
dc.date.accessioned2012-06-20T14:45:57Z
dc.date.available2012-06-20T14:45:57Z
dc.date.issued2010-08
dc.date.submitted2010-01
dc.identifier.issn1083-4362
dc.identifier.issn1090-266X
dc.identifier.issn0021-8693
dc.identifier.issn1531-586X
dc.identifier.urihttp://hdl.handle.net/1721.1/71177
dc.descriptionDedicated to Vladimir Morozov on the 100th anniversary of his birth.en_US
dc.description.abstractWe consider the variety of nilpotent elements in the dual of the Lie algebra of a reductive group over an algebraically closed field. We propose a definition of a partition of this variety into locally closed smooth subvarieties indexed by the unipotent classes in the corresponding group over the complex numbers. We obtain explicit results in types A, C and D.en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00031-010-9109-2en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcearXiven_US
dc.titleUnipotent elements in small characteristic, IVen_US
dc.typeArticleen_US
dc.identifier.citationLusztig, G. “Unipotent Elements in Small Characteristic, IV.” Transformation Groups 15.4 (2010): 921–936. Web.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.approverLusztig, George
dc.contributor.mitauthorLusztig, George
dc.relation.journalTransformation Groupsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLusztig, G.en
dc.identifier.orcidhttps://orcid.org/0000-0001-9414-6892
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record