Show simple item record

dc.contributor.authorEhinger, Krista A.
dc.contributor.authorXiao, Jianxiong
dc.contributor.authorTorralba, Antonio
dc.contributor.authorOliva, Aude
dc.date.accessioned2012-06-21T17:01:07Z
dc.date.available2012-06-21T17:01:07Z
dc.date.issued2011-07
dc.identifier.isbn978-0-9768318-7-7
dc.identifier.urihttp://hdl.handle.net/1721.1/71190
dc.description.abstractScenes, like objects, are visual entities that can be categorized into functional and semantic groups. One of the core concepts of human categorization is the idea that category membership is graded: some exemplars are more typical than others. Here, we obtain human typicality rankings for more than 120,000 images from 706 scene categories through an online rating task on Amazon Mechanical Turk. We use these rankings to identify the most typical examples of each scene category. Using computational models of scene classification based on global image features, we find that images which are rated as more typical examples of their category are more likely to be classified correctly. This indicates that the most typical scene examples contain the diagnostic visual features that are relevant for their categorization. Objectless, holistic representations of scenes might serve as a good basis for understanding how semantic categories are defined in term of perceptual representations.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF-CAREER Award (0546262)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant 0705677)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant 1016862)en_US
dc.description.sponsorshipNuclear Energy Institute (grant EY02484)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Career Award (0747120))en_US
dc.description.sponsorshipGoogle (Firm) (Research Award)en_US
dc.language.isoen_US
dc.publisherCognitive Science Society, Inc.en_US
dc.relation.isversionofhttp://palm.mindmodeling.org/cogsci2011/papers/0600/paper0600.pdfen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceProf. Olivaen_US
dc.titleEstimating scene typicality from human ratings and image featuresen_US
dc.typeArticleen_US
dc.identifier.citationEhinger, Krista A. et al. "Estimating scene typicality from human ratings and image features." in Proceedings of the 33rd Annual Cognitive Science Conference, COGSCI 2011.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverOliva, Aude
dc.contributor.mitauthorOliva, Aude
dc.contributor.mitauthorEhinger, Krista A.
dc.contributor.mitauthorXiao, Jianxiong
dc.contributor.mitauthorTorralba, Antonio
dc.relation.journalProceedings of the 33rd Annual Cognitive Science Conference, COGSCI 2011, Boston, Massachusetts, Wednesday, July 20 - Saturday July 23, 2011en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsEhinger, Krista A.; Xiao, Jianxiong; Torralba, Antonio; Oliva, Audeen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4915-0256
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record