dc.contributor.author | Calderon de Anda, Froylan | |
dc.contributor.author | Meletis, Konstantinos | |
dc.contributor.author | Ge, Xuecai | |
dc.contributor.author | Rei, Damien | |
dc.contributor.author | Tsai, Li-Huei | |
dc.date.accessioned | 2012-06-27T16:59:32Z | |
dc.date.available | 2012-06-27T16:59:32Z | |
dc.date.issued | 2010-08 | |
dc.identifier.issn | 0270-6474 | |
dc.identifier.issn | 1529-2401 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/71218 | |
dc.description.abstract | The mechanisms underlying the normal development of neuronal morphology remain a fundamental question in neurobiology. Studies in cultured neurons have suggested that the position of the centrosome and the Golgi may predict the site of axon outgrowth. During neuronal migration in the developing cortex, however, the centrosome and Golgi are oriented toward the cortical plate at a time when axons grow toward the ventricular zone. In the current work, we use in situ live imaging to demonstrate that the centrosome and the accompanying polarized cytoplasm exhibit apical translocation in newborn cortical neurons preceding initial axon outgrowth. Disruption of centrosomal activity or downregulation of the centriolar satellite protein PCM-1 affects axon formation. We further show that downregulation of the centrosomal protein Cep120 impairs microtubule organization, resulting in increased centrosome motility. Decreased centrosome motility resulting from microtubule stabilization causes an aberrant centrosomal localization, leading to misplaced axonal outgrowth. Our results reveal the dynamic nature of the centrosome in developing cortical neurons, and implicate centrosome translocation and microtubule organization during the multipolar stage as important determinants of axon formation. | en_US |
dc.description.sponsorship | Simons Initiative on Autism | en_US |
dc.description.sponsorship | The Brain Infrastructure Grant Program | en_US |
dc.description.sponsorship | Knut and Alice Wallenberg Foundation | en_US |
dc.description.sponsorship | Howard Hughes Medical Institute | en_US |
dc.language.iso | en_US | |
dc.publisher | Society for Neuroscience | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1523/jneurosci.0381-10.2010 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | SFN | en_US |
dc.title | Centrosome Motility Is Essential for Initial Axon Formation in the Neocortex | en_US |
dc.type | Article | en_US |
dc.identifier.citation | de Anda, F. C. et al. “Centrosome Motility Is Essential for Initial Axon Formation in the Neocortex.” Journal of Neuroscience 30.31 (2010): 10391–10406. Web. 27 June 2012. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences | en_US |
dc.contributor.department | Picower Institute for Learning and Memory | en_US |
dc.contributor.approver | Tsai, Li-Huei | |
dc.contributor.mitauthor | Calderon de Anda, Froylan | |
dc.contributor.mitauthor | Meletis, Konstantinos | |
dc.contributor.mitauthor | Ge, Xuecai | |
dc.contributor.mitauthor | Rei, Damien | |
dc.contributor.mitauthor | Tsai, Li-Huei | |
dc.relation.journal | Journal of Neuroscience | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | de Anda, F. C.; Meletis, K.; Ge, X.; Rei, D.; Tsai, L.-H. | en |
dc.identifier.orcid | https://orcid.org/0000-0003-1262-0592 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |