MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Instanton Floer homology and the Alexander polynomial

Author(s)
Kronheimer, P. B.; Mrowka, Tomasz S.
Thumbnail
DownloadMrowka_Instanton Floer (arxiv).pdf (416.1Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The instanton Floer homology of a knot in the three-sphere is a vector space with a canonical mod 2 grading. It carries a distinguished endomorphism of even degree, arising from the 2–dimensional homology class represented by a Seifert surface. The Floer homology decomposes as a direct sum of the generalized eigenspaces of this endomorphism. We show that the Euler characteristics of these generalized eigenspaces are the coefficients of the Alexander polynomial of the knot. Among other applications, we deduce that instanton homology detects fibered knots.
Date issued
2010-08
URI
http://hdl.handle.net/1721.1/71237
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Algebraic & Geometric Topology
Publisher
Mathematical Sciences Publishers
Citation
Kronheimer, P. B., and T. S. Mrowka. “Instanton Floer Homology and the Alexander Polynomial.” Algebraic & Geometric Topology 10.3 (2010): 1715–1738. Web. 27 June 2012.
Version: Author's final manuscript
ISSN
1472-2747
1472-2739

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.