MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantifying Statistical Interdependence, Part III: N > 2 Point Processes

Author(s)
Weber, Theophane G.; Dauwels, Justin H. G.; Vialatte, Franc¸ois; Musha, Toshimitsu; Cichocki, Andrzej
Thumbnail
DownloadDauwels-2012-Quantifying statisti.pdf (1.061Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Stochastic event synchrony (SES) is a recently proposed family of similarity measures. First, “events” are extracted from the given signals; next, one tries to align events across the different time series. The better the alignment, the more similar the N time series are considered to be. The similarity measures quantify the reliability of the events (the fraction of “nonaligned” events) and the timing precision. So far, SES has been developed for pairs of one-dimensional (Part I) and multidimensional (Part II) point processes. In this letter (Part III), SES is extended from pairs of signals to N > 2 signals. The alignment and SES parameters are again determined through statistical inference, more specifically, by alternating two steps: (1) estimating the SES parameters from a given alignment and (2), with the resulting estimates, refining the alignment. The SES parameters are computed by maximum a posteriori (MAP) estimation (step 1), in analogy to the pairwise case. The alignment (step 2) is solved by linear integer programming. In order to test the robustness and reliability of the proposed N-variate SES method, it is first applied to synthetic data. We show that N-variate SES results in more reliable estimates than bivariate SES. Next N-variate SES is applied to two problems in neuroscience: to quantify the firing reliability of Morris-Lecar neurons and to detect anomalies in EEG synchrony of patients with mild cognitive impairment. Those problems were also considered in Parts I and II, respectively. In both cases, the N-variate SES approach yields a more detailed analysis.
Date issued
2011-12
URI
http://hdl.handle.net/1721.1/71242
Department
Massachusetts Institute of Technology. Operations Research Center
Journal
Neural Computation
Publisher
MIT Press
Citation
Dauwels, Justin et al. “Quantifying Statistical Interdependence, Part III: N > 2 Point Processes.” Neural Computation 24.2 (2012). © 2012 Massachusetts Institute of Technology
Version: Final published version
ISSN
0899-7667
1530-888X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.