Show simple item record

dc.contributor.authorWu, D. M.
dc.contributor.authorHagelstein, Peter L.
dc.date.accessioned2012-07-16T20:04:30Z
dc.date.available2012-07-16T20:04:30Z
dc.date.issued2009-11
dc.date.submitted2009-08
dc.identifier.issn0021-8979
dc.identifier.issn1089-7550
dc.identifier.urihttp://hdl.handle.net/1721.1/71634
dc.description.abstractThermal to electric energy conversion with thermophotovoltaics relies on radiation emitted by a hot body, which limits the power per unit area to that of a blackbody. Microgap thermophotovoltaics take advantage of evanescent waves to obtain higher throughput, with the power per unit area limited by the internal blackbody, which is n2 higher. We propose that even higher power per unit area can be achieved by taking advantage of thermal fluctuations in the near-surface electric fields. For this, we require a converter that couples to dipoles on the hot side, transferring excitation to promote carriers on the cold side which can be used to drive an electrical load. We analyze the simplest implementation of the scheme, in which excitation transfer occurs between matched quantum dots. Next, we examine thermal to electric conversion with a lossy dielectric (aluminum oxide) hot-side surface layer. We show that the throughput power per unit active area can exceed the n2 blackbody limit with this kind of converter. With the use of small quantum dots, the scheme becomes very efficient theoretically, but will require advances in technology to fabricate.en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.3257402en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceHagelstein via Amy Stouten_US
dc.titleQuantum-coupled single-electron thermal to electric conversion schemeen_US
dc.typeArticleen_US
dc.identifier.citationWu, D. M. et al. “Quantum-coupled single-electron thermal to electric conversion scheme.” Journal of Applied Physics 106.9 (2009): 094315.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.approverHagelstein, Peter L.
dc.contributor.mitauthorWu, D. M.
dc.contributor.mitauthorHagelstein, Peter L.
dc.relation.journalJournal of Applied Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWu, D. M.; Hagelstein, P. L.; Chen, P.; Sinha, K. P.; Meulenberg, A.en
dc.identifier.orcidhttps://orcid.org/0000-0003-4260-5940
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record