Macromolecular Crowding Directs Extracellular Matrix Organization and Mesenchymal Stem Cell Behavior
Author(s)
Zeiger, Adam Scott; Loe, Felicia C.; Li, Ran; Raghunath, Michael; Van Vliet, Krystyn J. Van
DownloadZeiger-2012-Macromolecular crowd.pdf (1.283Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Microenvironments of biological cells are dominated in vivo by macromolecular crowding and resultant excluded volume effects. This feature is absent in dilute in vitro cell culture. Here, we induced macromolecular crowding in vitro by using synthetic macromolecular globules of nm-scale radius at physiological levels of fractional volume occupancy. We quantified the impact of induced crowding on the extracellular and intracellular protein organization of human mesenchymal stem cells (MSCs) via immunocytochemistry, atomic force microscopy (AFM), and AFM-enabled nanoindentation. Macromolecular crowding in extracellular culture media directly induced supramolecular assembly and alignment of extracellular matrix proteins deposited by cells, which in turn increased alignment of the intracellular actin cytoskeleton. The resulting cell-matrix reciprocity further affected adhesion, proliferation, and migration behavior of MSCs. Macromolecular crowding can thus aid the design of more physiologically relevant in vitro studies and devices for MSCs and other cells, by increasing the fidelity between materials synthesized by cells in vivo and in vitro.
Date issued
2012-05Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
PLoS ONE
Publisher
Public Library of Science
Citation
Zeiger, Adam S. et al. “Macromolecular Crowding Directs Extracellular Matrix Organization and Mesenchymal Stem Cell Behavior.” Ed. Effie C. Tsilibary. PLoS ONE 7.5 (2012): e37904.
Version: Final published version
ISSN
1932-6203