dc.contributor.author | Christianson, Hans | |
dc.contributor.author | Hur, Vera Mikyoung | |
dc.contributor.author | Staffilani, Gigliola | |
dc.date.accessioned | 2012-07-17T18:16:50Z | |
dc.date.available | 2012-07-17T18:16:50Z | |
dc.date.issued | 2010-10 | |
dc.date.submitted | 2009-10 | |
dc.identifier.issn | 0360-5302 | |
dc.identifier.issn | 1532-4133 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/71655 | |
dc.description.abstract | Strichartz-type estimates for one-dimensional surface water-waves under surface tension are studied, based on the formulation of the problem as a nonlinear dispersive equation. We establish a family of dispersion estimates on time scales depending on the size of the frequencies. We infer that a solution u of the dispersive equation we introduce satisfies local-in-time Strichartz estimates with loss in derivative: ... where C depends on T and on the norms of the H[superscript s]-norm of the initial data. The proof uses the frequency analysis and semiclassical Strichartz estimates for the linealized water-wave operator. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Postdoctoral Fellowship) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (NSF grants DMS-0707647) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (NSF grant DMS-1002854) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (NSF grant DMS-0602678) | en_US |
dc.language.iso | en_US | |
dc.publisher | Taylor & Francis Group | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1080/03605301003758351 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Strichartz Estimates for the Water-Wave Problem with Surface Tension | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Christianson, Hans, Vera Mikyoung Hur, and Gigliola Staffilani. “Strichartz Estimates for the Water-Wave Problem with Surface Tension.” Communications in Partial Differential Equations 35.12 (2010): 2195–2252. Web. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.approver | Staffilani, Gigliola | |
dc.contributor.mitauthor | Staffilani, Gigliola | |
dc.contributor.mitauthor | Christianson, Hans | |
dc.contributor.mitauthor | Hur, Vera Mikyoung | |
dc.relation.journal | Communications in Partial Differential Equations | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Christianson, Hans; Hur, Vera Mikyoung; Staffilani, Gigliola | en |
dc.identifier.orcid | https://orcid.org/0000-0002-8220-4466 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |